Advertisement

Two-Round MPC: Information-Theoretic and Black-Box

  • Sanjam GargEmail author
  • Yuval Ishai
  • Akshayaram Srinivasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

We continue the study of protocols for secure multiparty computation (MPC) that require only two rounds of interaction. The recent works of Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) essentially settle the question by showing that such protocols are implied by the minimal assumption that a two-round oblivious transfer (OT) protocol exists. However, these protocols inherently make a non-black-box use of the underlying OT protocol, which results in poor concrete efficiency. Moreover, no analogous result was known in the information-theoretic setting, or alternatively based on one-way functions, given an OT correlations setup or an honest majority.

Motivated by these limitations, we study the possibility of obtaining information-theoretic and “black-box” implementations of two-round MPC protocols. We obtain the following results:
  • Two-round MPC from OT correlations. Given an OT correlations setup, we get protocols that make a black-box use of a pseudorandom generator (PRG) and are secure against a malicious adversary corrupting an arbitrary number of parties. For a semi-honest adversary, we get similar information-theoretic protocols for branching programs.

  • New NIOT constructions. Towards realizing OT correlations, we extend the DDH-based non-interactive OT (NIOT) protocol of Bellare and Micali (Crypto’89) to the malicious security model, and present new NIOT constructions from the Quadratic Residuosity Assumption (QRA) and the Learning With Errors (LWE) assumption.

  • Two-round black-box MPC with strong PKI setup. Combining the two previous results, we get two-round MPC protocols that make a black-box use of any DDH-hard or QRA-hard group. The protocols can offer security against a malicious adversary, and require a PKI setup that depends on the number of parties and the size of computation, but not on the inputs or the identities of the participating parties.

  • Two-round honest-majority MPC from secure channels. Given secure point-to-point channels, we get protocols that make a black-box use of a pseudorandom generator (PRG), as well as information-theoretic protocols for branching programs. These protocols can tolerate a semi-honest adversary corrupting a strict minority of the parties, where in the information-theoretic case the complexity is exponential in the number of parties.

References

  1. [ABT18]
    Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two rounds. To appear in TCC (2018). https://eprint.iacr.org/2018/894
  2. [ACGJ18]
    Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_14CrossRefGoogle Scholar
  3. [AIK04]
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, Rome, Italy, 17–19 October 2004, pp. 166–175. IEEE Computer Society Press (2004)Google Scholar
  4. [AJW11]
    Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. IACR Cryptology ePrint Archive, p. 613 (2011)Google Scholar
  5. [ALSZ13]
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, Berlin, Germany, 4–8 November 2013, pp. 535–548. ACM Press (2013)Google Scholar
  6. [ALSZ15]
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_26CrossRefGoogle Scholar
  7. [BB89]
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada, 14–16 August 1989, pp. 201–209 (1989)Google Scholar
  8. [BCG+17]
    Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: Optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, Dallas, TX, USA, 31 October–2 November 2017, pp. 2105–2122. ACM Press (2017)Google Scholar
  9. [BCS96]
    Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes. IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)MathSciNetCrossRefGoogle Scholar
  10. [BCW03]
    Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification. J. Cryptol. 16(4), 219–237 (2003)MathSciNetCrossRefGoogle Scholar
  11. [Bea96]
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 479–488 (1996)Google Scholar
  12. [BGG+18]
    Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. To appear in Crypto (2018). https://eprint.iacr.org/2017/956
  13. [BGH07]
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th FOCS, Providence, RI, USA, 20–23 October, pp. 647–657. IEEE Computer Society Press (2007)Google Scholar
  14. [BGI16]
    Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_19CrossRefGoogle Scholar
  15. [BGI17]
    Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_6CrossRefGoogle Scholar
  16. [BGI+18]
    Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: ITCS 2018, pp. 21:1–21:21, January 2018Google Scholar
  17. [BL18]
    Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_17CrossRefGoogle Scholar
  18. [BM90]
    Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_48CrossRefGoogle Scholar
  19. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, Baltimore, MD, USA, 14–16 May, pp. 503–513. ACM Press (1990)Google Scholar
  20. [Can00]
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefGoogle Scholar
  21. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, Las Vegas, NV, USA, 14–17 October 2001, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  22. [CEMY09]
    Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure multi-party computation minimizing online rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 268–286. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_16CrossRefGoogle Scholar
  23. [DH76]
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  24. [DHRW16]
    Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_4CrossRefGoogle Scholar
  25. [EGL85]
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)MathSciNetCrossRefGoogle Scholar
  26. [FGJI17]
    Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68637-0_23CrossRefGoogle Scholar
  27. [GGHR14]
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_4CrossRefGoogle Scholar
  28. [GLS15]
    Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_4CrossRefGoogle Scholar
  29. [GM82]
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th ACM STOC, San Francisco, CA, USA, 5–7 May 1982, pp. 365–377. ACM Press (1982)Google Scholar
  30. [GMMM18]
    Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity of OT extension. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 545–574. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_19CrossRefGoogle Scholar
  31. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, New York City, NY, USA, 25–27 May 1987, pp. 218–229. ACM Press (1987)Google Scholar
  32. [GS08]
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  33. [GS17]
    Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)Google Scholar
  34. [GS18]
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16CrossRefGoogle Scholar
  35. [IK00]
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st FOCS, Redondo Beach, CA, USA, 12–14 November 2000, pp. 294–304. IEEE Computer Society Press (2000)Google Scholar
  36. [IKM+13]
    Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_34CrossRefzbMATHGoogle Scholar
  37. [IKNP03]
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  38. [IKO+11]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_23CrossRefGoogle Scholar
  39. [IKP10]
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_31CrossRefGoogle Scholar
  40. [IMO18]
    Ishai, Y., Mittal, M., Ostrovsky, R.: On the message complexity of secure multiparty computation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 698–711. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_24CrossRefGoogle Scholar
  41. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
  42. [IR89]
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washigton, USA, 14–17 May 1989, pp. 44–61 (1989)Google Scholar
  43. [Kil88]
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, Chicago, IL, USA, 2–4 May 1988, pp. 20–31. ACM Press (1988)Google Scholar
  44. [KOS15]
    Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_35CrossRefGoogle Scholar
  45. [MW16]
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26CrossRefGoogle Scholar
  46. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31CrossRefGoogle Scholar
  47. [PW00]
    Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: Jajodia, S., Samarati, P. (eds.) ACM CCS 2000, Athens, Greece, 1–4 November 2000, pp. 245–254. ACM Press (2000)Google Scholar
  48. [Rab81]
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  49. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, Baltimore, MA, USA, 22–24 May 2005, pp. 84–93. ACM Press (2005)Google Scholar
  50. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Sanjam Garg
    • 1
    Email author
  • Yuval Ishai
    • 2
  • Akshayaram Srinivasan
    • 1
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.TechnionHaifaIsrael

Personalised recommendations