Advertisement

Registration-Based Encryption: Removing Private-Key Generator from IBE

  • Sanjam GargEmail author
  • Mohammad Hajiabadi
  • Mohammad Mahmoody
  • Ahmadreza Rahimi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

In this work, we introduce the notion of registration-based encryption (RBE for short) with the goal of removing the trust parties need to place in the private-key generator in an IBE scheme. In an RBE scheme, users sample their own public and secret keys. There will also be a “key curator” whose job is only to aggregate the public keys of all the registered users and update the “short” public parameter whenever a new user joins the system. Encryption can still be performed to a particular recipient using the recipient’s identity and any public parameters released subsequent to the recipient’s registration. Decryption requires some auxiliary information connecting users’ public (and secret) keys to the public parameters. Because of this, as the public parameters get updated, a decryptor may need to obtain “a few” additional auxiliary information for decryption. More formally, if n is the total number of identities and \(\mathrm {\kappa }\) is the security parameter, we require the following.

Efficiency requirements: (1) A decryptor only needs to obtain updated auxiliary information for decryption at most \(O(\log n)\) times in its lifetime, (2) each of these updates are computed by the key curator in time \({\text {poly}}(\mathrm {\kappa },\log n)\), and (3) the key curator updates the public parameter upon the registration of a new party in time \({\text {poly}}(\mathrm {\kappa },\log n)\). Properties (2) and (3) require the key curator to have random access to its data.

Compactness requirements: (1) Public parameters are always at most \({\text {poly}}(\mathrm {\kappa },\log n)\) bit, and (2) the total size of updates a user ever needs for decryption is also at most \({\text {poly}}(\mathrm {\kappa },\log n)\) bits.

We present feasibility results for constructions of RBE based on indistinguishably obfuscation. We further provide constructions of weakly efficient RBE, in which the registration step is done in \({\text {poly}}(\mathrm {\kappa },n)\), based on CDH, Factoring or LWE assumptions. Note that registration is done only once per identity, and the more frequent operation of generating updates for a user, which can happen more times, still runs in time \({\text {poly}}(\mathrm {\kappa },\log n)\). We leave open the problem of obtaining standard RBE (with \({\text {poly}}(\mathrm {\kappa },\log n)\) registration time) from standard assumptions.

References

  1. 1.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_29CrossRefGoogle Scholar
  2. 2.
    Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_1CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_20CrossRefGoogle Scholar
  5. 5.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45831-X_18CrossRefGoogle Scholar
  6. 6.
    Cheng, Z., Comley, R., Vasiu, L.: Remove key escrow from the identity-based encryption system. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 37–50. Springer, Boston, MA (2004).  https://doi.org/10.1007/1-4020-8141-3_6CrossRefGoogle Scholar
  7. 7.
    Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_2CrossRefGoogle Scholar
  8. 8.
    Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_15CrossRefGoogle Scholar
  9. 9.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_32CrossRefGoogle Scholar
  10. 10.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18CrossRefGoogle Scholar
  12. 12.
    Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_1CrossRefzbMATHGoogle Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)Google Scholar
  14. 14.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013, pp. 467–476. ACM Press (2013)Google Scholar
  15. 15.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th Annual ACM Symposium on Theory of Computing, San Francisco, CA, USA, 5–7 May 1982, pp. 365–377. ACM Press (1982)Google Scholar
  16. 16.
    Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_24CrossRefGoogle Scholar
  17. 17.
    Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-based encryption. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 427–436. ACM (2008)Google Scholar
  18. 18.
    Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference on Innovations in Theoretical Computer Science, Rehovot, Israel, 11–13 January 2015, pp. 163–172. Association for Computing Machinery (2015)Google Scholar
  19. 19.
    Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–453. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15317-4_27CrossRefzbMATHGoogle Scholar
  20. 20.
    Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryption with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85538-5_23CrossRefGoogle Scholar
  21. 21.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Rogaway, P.: The moral character of cryptographic work. Cryptology ePrint Archive, Report 2015/1162 (2015). http://eprint.iacr.org/2015/1162
  23. 23.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  24. 24.
    Wei, Q., Qi, F., Tang, Z.: Remove key escrow from the BF and Gentry identity-based encryption with non-interactive key generation. Telecommun. Syst. 69, 1–10 (2018)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Sanjam Garg
    • 1
    Email author
  • Mohammad Hajiabadi
    • 1
    • 2
  • Mohammad Mahmoody
    • 2
  • Ahmadreza Rahimi
    • 2
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.University of VirginiaCharlottesvilleUSA

Personalised recommendations