Advertisement

Oblivious Transfer in Incomplete Networks

  • Varun NarayananEmail author
  • Vinod M. Prabahakaran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

Secure message transmission and Byzantine agreement have been studied extensively in incomplete networks. However, information theoretically secure multiparty computation (MPC) in incomplete networks is less well understood. In this paper, we characterize the conditions under which a pair of parties can compute oblivious transfer (OT) information theoretically securely against a general adversary structure in an incomplete network of reliable, private channels. We provide characterizations for both semi-honest and malicious models. A consequence of our results is a complete characterization of networks in which a given subset of parties can compute any functionality securely with respect to an adversary structure in the semi-honest case and a partial characterization in the malicious case.

Notes

Acknowledgements

We acknowledge useful discussions with Manoj Prabhakaran, IIT Bombay.

References

  1. 1.
    Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_24CrossRefGoogle Scholar
  2. 2.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_8CrossRefGoogle Scholar
  3. 3.
    Beimel, A.: On private computation in incomplete networks. J. Distrib. Comput. 19(3), 237–252 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)Google Scholar
  5. 5.
    Bläser, M., et al.: Privacy in non-private environments. J. Theory Comput. Syst. 48(1), 211–245 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bläser, M., et al.: Private computation: k-connected versus 1-connected networks. J. Cryptol. 19(3), 341–357 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chandran, N., Garay, J., Ostrovsky, R.: Edge fault tolerance on sparse networks. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 452–463. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31585-5_41CrossRefGoogle Scholar
  8. 8.
    Chandran, N., Garay, J., Ostrovsky, R.: Improved fault tolerance and secure computation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 249–260. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_21CrossRefzbMATHGoogle Scholar
  9. 9.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19 (1988)Google Scholar
  10. 10.
    Cramer, R., Damgård, I., Nielsen, J.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  11. 11.
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_9CrossRefGoogle Scholar
  12. 12.
    Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dolev, D., et al.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dwork, C., et al.: Fault tolerance in networks of bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. J. Distrib. Comput. 1(1), 26–39 (1986)CrossRefGoogle Scholar
  16. 16.
    Franklin, M.K., Yung, M.: Secure hypergraphs: privacy from partial broadcast. SIAM J. Discret. Math. 18(3), 437–450 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_18CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  19. 19.
    Goldrcich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-48184-2_6CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36108-1_2CrossRefGoogle Scholar
  21. 21.
    Halevi, S., et al.: Secure multiparty computation with general interaction patterns. In: ITCS, pp. 157–168 (2016)Google Scholar
  22. 22.
    Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed for secure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_16CrossRefGoogle Scholar
  23. 23.
    Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_22CrossRefGoogle Scholar
  24. 24.
    Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In: PODC, pp. 25–34 (1997)Google Scholar
  25. 25.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
  26. 26.
    Jakoby, A., Liśkiewicz, M., Reischuk, R.: Private computations in networks: topology versus randomness. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 121–132. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36494-3_12CrossRefGoogle Scholar
  27. 27.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)Google Scholar
  28. 28.
    Kumar, M.V.N.A., et al.: On perfectly secure communication over arbitrary networks. In: PODC, pp. 193–202 (2002)Google Scholar
  29. 29.
    Kumaresan, R., Raghuraman, S., Sealfon, A.: Network oblivious transfer. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 366–396. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_13CrossRefGoogle Scholar
  30. 30.
    Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. IEEE Trans. Inf. Theor. 55(11), 5223–5232 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–401 (1982)CrossRefGoogle Scholar
  32. 32.
    Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious transfer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_22CrossRefGoogle Scholar
  33. 33.
    Narayanan, V., Prabahakaran, V.M.: Oblivious Transfer in Incomplete Networks. Cryptology ePrint Archive, Report 2018/875. https://eprint.iacr.org/2018/875 (2018)
  34. 34.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC, pp. 73–85 (1989)Google Scholar
  35. 35.
    Sayeed, M.H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. J. Inf. Comput. 126(1), 53–61 (1996)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Spini, G., Zémor, G.: Perfectly secure message transmission in two rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 286–304. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_12CrossRefGoogle Scholar
  37. 37.
    Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_33CrossRefGoogle Scholar
  38. 38.
    Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In: PODC, pp. 83–89 (1992)Google Scholar
  39. 39.
    Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_32CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations