Advertisement

Round-Optimal Fully Black-Box Zero-Knowledge Arguments from One-Way Permutations

  • Carmit Hazay
  • Muthuramakrishnan VenkitasubramaniamEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

In this paper, we revisit the round complexity of designing zero-knowledge (ZK) arguments via a black-box construction from minimal assumptions. Our main result implements a 4-round ZK argument for any language in \(\textsf {NP}\), based on injective one-way functions, that makes black-box use of the underlying function. As a corollary, we also obtain the first 4-round perfect zero-knowledge argument for \(\textsf {NP}\) based on claw-free permutations via a black-box construction and 4-round input-delayed commit-and-prove zero-knowledge argument based on injective one-way functions.

Keywords

One-way permutations Zero-knowledge arguments Black-box constructions 

Notes

Acknowledgments

We thank the anonymous TCC reviewers for their detailed comments and Rafael Pass for helpful suggestions. The first author was supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The second author was supported by Google Faculty Research Grant and NSF Award CNS-1526377. This work was partly carried out by the second author during a visit to DIMACS supported by the National Science Foundation under grant number CNS-1523467.

References

  1. [BJY97]
    Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_20CrossRefGoogle Scholar
  2. [BKP18]
    Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless hash functions. In: STOC (2018)Google Scholar
  3. [Blu]
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, USA, pp. 1444–1451 (1986). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.9048&rep=rep1&type=pdf
  4. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  5. [CPS+15]
    Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR composition of sigma-protocols. IACR Cryptol. ePrint Arch. 2015, 810 (2015)zbMATHGoogle Scholar
  6. [FGJ18]
    Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 3–33. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_1CrossRefGoogle Scholar
  7. [FS89]
    Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_46CrossRefGoogle Scholar
  8. [GK96a]
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)MathSciNetCrossRefGoogle Scholar
  9. [GK96b]
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)MathSciNetCrossRefGoogle Scholar
  10. [GMR89]
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefGoogle Scholar
  11. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC, pp. 218–229, (1987)Google Scholar
  12. [GMW91]
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefGoogle Scholar
  13. [GO94]
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)MathSciNetCrossRefGoogle Scholar
  14. [Gol01]
    Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  15. [HV16]
    Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 397–429. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_14CrossRefGoogle Scholar
  16. [IKOS07]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC, pp. 21–30 (2007)Google Scholar
  17. [IKOS09]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)MathSciNetCrossRefGoogle Scholar
  18. [IMS12]
    Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_9CrossRefGoogle Scholar
  19. [Kat12]
    Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptology 25(1), 41–56 (2012)MathSciNetCrossRefGoogle Scholar
  20. [LS90]
    Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-38424-3_26CrossRefGoogle Scholar
  21. [Nao91]
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRefGoogle Scholar
  22. [ORS15]
    Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_17CrossRefGoogle Scholar
  23. [PW09]
    Pass, R., Wee, H.: Black-Box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_24CrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Carmit Hazay
    • 1
  • Muthuramakrishnan Venkitasubramaniam
    • 2
    Email author
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.University of RochesterRochesterUSA

Personalised recommendations