Skip to main content

Training in Virtual Environments for Hybrid Power Plant

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11241))

Included in the following conference series:

Abstract

This article describes a Virtual Environments application of a Hybrid Power Plant, for professionals in Electrical Power Systems training. The application is developed in the Game Engine Unity 3D and features three different modes as: immersion, interaction and failure modes, which enhance professional’s skills through visualization of the plant components and different processes operation. Additionally, failure mode is proposed, it simulates wrong maneuvers consequences and effects. The Generation Environment is integrated by wind turbines and photovoltaic panels that interact through a mathematical model and enables manipulation of dependent variables bringing out a more realistic background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gyusung, L., Mija, L.: Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Accepted June (2017)

    Google Scholar 

  2. Andaluz, V.H., et al.: Immersive industrial process environment from a P&ID diagram. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 701–712. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_633

  3. Andaluz, V.H., et al.: Unity3D virtual animation of robots with coupled and uncoupled mechanism. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 89–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40621-3_6

    Chapter  Google Scholar 

  4. Liang, H., Wen, Y., Chengzhong, H.: The platform design of practice teaching in the electromechanical major that based on the virtual reality technique. In: Du, Z. (ed.) Intelligence Computation and Evolutionary Computation. AISC, vol. 180, pp. 161–165. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31656-2_23

    Chapter  Google Scholar 

  5. Romero, G., Maroto, J., Felez, J., Cabanellas, J., MartÍnez, M., Carretero, A.: Virtual reality applied to a full simulator of electrical sub-stations. Electr. Power Syst. Res. 78(3), 409–417 (2008)

    Article  Google Scholar 

  6. Barreto, C., Cardoso, A., Lamounier, E., Carvalho, A., Mattioli, L.: Strategy to optimize the creation of arrangements in virtual electric power substations. In: IEEE 2017 XLIII Latin American Computer Conference (CLEI), p. 21 (2017)

    Google Scholar 

  7. de Sousa, M.P.A., Filho, M.R., Nunes, M.V.A., da Costa Lopes, A.: Maintenance and operation of a hydroelectric unit of energy in a power system using virtual reality. Int. J. Electr. Power Energy Syst. 32(6), 599–606 (2010)

    Google Scholar 

  8. Lizcano, P.E., Manchado, C., Gomez-Jauregui, V., Otero, C.: Virtual reality to assess visual impact in wind energy projects. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Advances on Mechanics, Design Engineering and Manufacturing. LNME, pp. 717–725. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45781-9_72

    Chapter  Google Scholar 

  9. Valdez, M.T., Ferreira, C.M., Martins, M.J.M., Barbosa, F.P.M.: Virtual labs in electrical engineering education the VEMA environment. In: IEEE 2014 Information Technology Based Higher Education and Training (ITHET), pp. 1–5 (2014)

    Google Scholar 

  10. Yasmín, H., Pérez, R.M.: Virtual reality systems for training improvement in electrical distribution substations. In: IEEE Third International Conference on Innovative Computing Technology (INTECH 2013), pp. 199–204, 04 November 2013

    Google Scholar 

  11. Kao, Y.-C., Tsai, J.-P., Cheng, H.-Y., Chao, C.-C.: Design and construction of a virtual reality wire cut electrical discharge machining system. In: International Symposium on Computer, Communication, Control and Automation (2010)

    Google Scholar 

  12. Enríquez, D.C., Pimentel, J.J.A., López, M.Á.H., García, O.S.N.: Uso didáctico de la Realidad Virtual Inmersiva enfocada en la inspección de Aerogeneradores, Apertura, pp. 8–23 (2017)

    Google Scholar 

  13. Araújo, R.T.S., Araújo, M.E.S., Medeiros, F.N.S., Oliveira, B.F.C., Araújo, N.M.S.: Interactive simulator for electric engineering training. In: IEEE, May 2016

    Google Scholar 

  14. Galvan-Bobadilla, I., Ayala-García, A., Rodríguez-Gallegos, E., Arroyo-Figueroa, G.: Virtual reality training system for the maintenance of underground lines in power distribution system. In: IEEE Third International Conference on Innovative Computing Technology, pp. 199–204 (2013)

    Google Scholar 

  15. Barata, P.N.A., Filho, M.R., Nunes, M.V.A.: Consolidating learning in power systems: virtual reality applied to the study of the operation of electric power transformers. IEEE Trans. Edu. 58(4), 255–261 (2015)

    Article  Google Scholar 

  16. Ortiz, J.S., et al.: Virtual training for industrial automation processes through pneumatic controls. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 516–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_37

    Chapter  Google Scholar 

  17. Abulrub, A.H.G., Attridge, A.N., Williams, M.A., Virtual reality in engineering education: the future of creative learning. In: IEEE Global Engineering Education Conference, pp. 751–757 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, devel-opment, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipula-dor Aéreo; also to ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Siste-mas Inteligentes, GI-ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max G. Chiluisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiluisa, M.G., Mullo, R.D., Andaluz, V.H. (2018). Training in Virtual Environments for Hybrid Power Plant. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics