Skip to main content

Flight in Non-spherical Gravity Fields

  • Chapter
  • First Online:
Optimal Space Flight Navigation

Part of the book series: Control Engineering ((CONTRENGIN))

  • 829 Accesses

Abstract

Spaceflight involving orbital transfers around irregularly shaped bodies or in the gravity field of several large bodies is fundamentally different from the flight in the gravity field of a single spherical body, which was covered in the previous chapters. The primary reason for this difference is that the spacecraft is no longer in a time-invariant gravity field of the two-body problem, but instead encounters a time-dependent field due to the relative motion of the multiple large bodies with respect to one another, or due to the changing position of the spacecraft relative to a rotating, non-spherical body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A different state-space representation is obtained by replacing the generalized momentum vector, p, with the velocity, \(\dot {\mathbf {q}}\):

    $$\displaystyle \begin{aligned} \mathbf{f}(\mathbf{X})=\left\{\begin{array}{c}\dot{\mathbf{q}}\\\ddot{\mathbf{q}} \end{array}\right\}=\left\{\begin{array}{c}\dot{\mathbf{q}}\\{\mathbf{K}}^T\mathbf{K}\mathbf{q}-\nabla_q(U)+2\mathbf{K}\dot{\mathbf{q}} \end{array}\right\} \end{aligned}$$

    whose Jacobian is given by

    $$\displaystyle \begin{aligned} {\mathbf{f}}^{\prime}(\mathbf{X})=\left(\begin{array}{cccc}\mathbf{0} &&& \mathbf{I}\\\varOmega_{\mathbf{qq}} &&& 2\mathbf{K} \end{array}\right) \end{aligned}$$

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)

    MATH  Google Scholar 

  2. Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control. Dyn. 32, 1921–1930 (2009)

    Article  Google Scholar 

  3. Bai, X., Junkins, J.L.: Modified Chebyshev-Picard iteration methods for station-keeping of translunar halo orbits. Math. Probl. Eng. 2012, 1–18 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Bando, M., Scheeres, D.J.: Attractive sets to unstable orbits using optimal feedback control. J. Guid. Control. Dyn. 39, 2725–2739 (2016)

    Article  Google Scholar 

  5. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1999)

    Google Scholar 

  6. Breakwell, J.V., Kamel, A.A., Ratner, M.J.: Station-keeping for a translunar communication station. Celest. Mech. 10, 357–373 (1974)

    Article  MathSciNet  Google Scholar 

  7. Byrnes, D.V.: Application of the pseudostate theory to the three-body lambert problem. J. Astronaut. Sci. 37, 221–232 (1989)

    MathSciNet  Google Scholar 

  8. Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343–370 (2015)

    Article  MathSciNet  Google Scholar 

  9. Conway, B.A. (ed.): Spacecraft Trajectory Optimization. Cambridge University Press, New York (2010)

    Google Scholar 

  10. Dunham, D.W., Davis, S.A.: Optimization of a multiple Lunar-Swingby trajectory sequence. J. Astronaut. Sci. 33, 275–288 (1985)

    Google Scholar 

  11. Farquhar, R.W.: The control and use of libration-point satellites. Goddard space flight center, Tech. Rep. NASA TR R-346 (September 1970)

    Google Scholar 

  12. Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)

    Article  Google Scholar 

  13. Ghorbani, M., Assadian, N.: Optimal station-keeping near Earth-Moon collinear libration points using continuous and impulsive maneuvers. Adv. Space Res. 52, 2067–2079 (2013)

    Article  Google Scholar 

  14. Gomez, G., Howell, K.C., Simo, C., Masdemont, J.: Station-keeping strategies for translunar libration point orbits. In: Proceedings of AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 98-168, Monterey (1998)

    Google Scholar 

  15. Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46, 135–176 (1998)

    MathSciNet  Google Scholar 

  16. Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  MathSciNet  Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  18. Howell, K.: Three-dimensional, periodic, ‘Halo’ orbits. Celest. Mech. 32, 53–71 (1984)

    Article  MathSciNet  Google Scholar 

  19. Howell, K., Barden, B., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45, 161–178 (1997)

    MathSciNet  Google Scholar 

  20. Jones, B.L., Bishop, R.L.: H 2 optimal halo orbit guidance. J. Guid. Control. Dyn. 16, 1118–1124 (1993)

    Article  Google Scholar 

  21. Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in halo orbits: an H approach. IEEE Trans. Control Syst. Technol. 14, 572–578 (2006)

    Article  Google Scholar 

  22. Li, C., Liu, G., Huang, J., Gao, T., Guo, Y.: Stationkeeping control for libration point orbits using NMPC. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-692, Vail (2015)

    Google Scholar 

  23. Lian, Y., Gomez, G., Masdemont, J.J., Tang, G.: Station keeping of real Earth-Moon libration point orbits using discrete-time sliding mode approach. Commun. Nonlinear Sci. Numer. Simul. 19, 3792–3807 (2014)

    Article  MathSciNet  Google Scholar 

  24. Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control. Dyn. 28, 1038–1048 (2005)

    Article  Google Scholar 

  25. Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering. Springer, Berlin (2012)

    MATH  Google Scholar 

  26. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, New York (1992)

    Book  Google Scholar 

  27. Moritz, H.: Advanced Physical Geodesy. Abacus Press, New York (1980)

    Google Scholar 

  28. Nazari, M., Anthony, W., Butcher, E.A.: Continuous thrust stationkeeping in Earth-Moon L 1 halo orbits based on LQR control and Floquet theory. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2014-4140, San Diego, CA (2014)

    Google Scholar 

  29. Otten, M., McInnes, C.R.: Near minimum-time trajectories for solar sails. J. Guid. Control. Dyn. 24, 632–634 (2001)

    Article  Google Scholar 

  30. Pavlak, T.A., Howell, K.C.: Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2012-4665, Minneapolis (2012)

    Google Scholar 

  31. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)

    Article  MathSciNet  Google Scholar 

  32. Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3, 543–548 (1980)

    Article  Google Scholar 

  33. Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control. Dyn. 40, 1085–1105 (2017)

    Article  Google Scholar 

  34. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  35. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic, New York (1967)

    MATH  Google Scholar 

  36. Tewari, A.: Modern Control Design with MATLAB and Simulink. Wiley, Chichester (2002)

    Google Scholar 

  37. Tewari, A.: Atmospheric and Space Flight Dynamics–Modeling and Simulation with MATLAB and Simulink. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  38. Thurman, R., Worfolk, P.A.: Geometry of halo orbits in the circular restricted three-body problem. Technical Report GCG95, University of Minnesota, Minneapolis (1996)

    Google Scholar 

  39. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 CASTALIA. Celest. Mech. Dyn. Astron. 65, 313–344 (1996)

    MATH  Google Scholar 

  40. Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht (1978)

    Google Scholar 

  41. Yang, H., Bai, X., Baoyin, H.: Rapid generation of time-optimal trajectories for asteroid landing via convex optimization. J. Guid. Control. Dyn. 40, 628–641 (2017)

    Article  Google Scholar 

  42. Zhang, C., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control. Dyn. 38, 1501–1509 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tewari, A. (2019). Flight in Non-spherical Gravity Fields. In: Optimal Space Flight Navigation. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-03789-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03789-5_6

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-030-03788-8

  • Online ISBN: 978-3-030-03789-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics