Flight in Non-spherical Gravity Fields

  • Ashish Tewari
Part of the Control Engineering book series (CONTRENGIN)


Spaceflight involving orbital transfers around irregularly shaped bodies or in the gravity field of several large bodies is fundamentally different from the flight in the gravity field of a single spherical body, which was covered in the previous chapters. The primary reason for this difference is that the spacecraft is no longer in a time-invariant gravity field of the two-body problem, but instead encounters a time-dependent field due to the relative motion of the multiple large bodies with respect to one another, or due to the changing position of the spacecraft relative to a rotating, non-spherical body.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control. Dyn. 32, 1921–1930 (2009)CrossRefGoogle Scholar
  3. 5.
    Bai, X., Junkins, J.L.: Modified Chebyshev-Picard iteration methods for station-keeping of translunar halo orbits. Math. Probl. Eng. 2012, 1–18 (2012)MathSciNetzbMATHGoogle Scholar
  4. 6.
    Bando, M., Scheeres, D.J.: Attractive sets to unstable orbits using optimal feedback control. J. Guid. Control. Dyn. 39, 2725–2739 (2016)CrossRefGoogle Scholar
  5. 8.
    Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1999)Google Scholar
  6. 18.
    Breakwell, J.V., Kamel, A.A., Ratner, M.J.: Station-keeping for a translunar communication station. Celest. Mech. 10, 357–373 (1974)MathSciNetCrossRefGoogle Scholar
  7. 20.
    Byrnes, D.V.: Application of the pseudostate theory to the three-body lambert problem. J. Astronaut. Sci. 37, 221–232 (1989)MathSciNetGoogle Scholar
  8. 22.
    Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343–370 (2015)MathSciNetCrossRefGoogle Scholar
  9. 25.
    Conway, B.A. (ed.): Spacecraft Trajectory Optimization. Cambridge University Press, New York (2010)Google Scholar
  10. 27.
    Dunham, D.W., Davis, S.A.: Optimization of a multiple Lunar-Swingby trajectory sequence. J. Astronaut. Sci. 33, 275–288 (1985)Google Scholar
  11. 29.
    Farquhar, R.W.: The control and use of libration-point satellites. Goddard space flight center, Tech. Rep. NASA TR R-346 (September 1970)Google Scholar
  12. 30.
    Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)CrossRefGoogle Scholar
  13. 33.
    Ghorbani, M., Assadian, N.: Optimal station-keeping near Earth-Moon collinear libration points using continuous and impulsive maneuvers. Adv. Space Res. 52, 2067–2079 (2013)CrossRefGoogle Scholar
  14. 35.
    Gomez, G., Howell, K.C., Simo, C., Masdemont, J.: Station-keeping strategies for translunar libration point orbits. In: Proceedings of AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 98-168, Monterey (1998)Google Scholar
  15. 36.
    Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46, 135–176 (1998)MathSciNetGoogle Scholar
  16. 37.
    Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)MathSciNetCrossRefGoogle Scholar
  17. 38.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  18. 40.
    Howell, K.: Three-dimensional, periodic, ‘Halo’ orbits. Celest. Mech. 32, 53–71 (1984)MathSciNetCrossRefGoogle Scholar
  19. 41.
    Howell, K., Barden, B., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45, 161–178 (1997)MathSciNetGoogle Scholar
  20. 43.
    Jones, B.L., Bishop, R.L.: H 2 optimal halo orbit guidance. J. Guid. Control. Dyn. 16, 1118–1124 (1993)CrossRefGoogle Scholar
  21. 48.
    Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in halo orbits: an H approach. IEEE Trans. Control Syst. Technol. 14, 572–578 (2006)CrossRefGoogle Scholar
  22. 54.
    Li, C., Liu, G., Huang, J., Gao, T., Guo, Y.: Stationkeeping control for libration point orbits using NMPC. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-692, Vail (2015)Google Scholar
  23. 55.
    Lian, Y., Gomez, G., Masdemont, J.J., Tang, G.: Station keeping of real Earth-Moon libration point orbits using discrete-time sliding mode approach. Commun. Nonlinear Sci. Numer. Simul. 19, 3792–3807 (2014)MathSciNetCrossRefGoogle Scholar
  24. 56.
    Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control. Dyn. 28, 1038–1048 (2005)CrossRefGoogle Scholar
  25. 58.
    Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering. Springer, Berlin (2012)zbMATHGoogle Scholar
  26. 60.
    Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, New York (1992)CrossRefGoogle Scholar
  27. 62.
    Moritz, H.: Advanced Physical Geodesy. Abacus Press, New York (1980)Google Scholar
  28. 63.
    Nazari, M., Anthony, W., Butcher, E.A.: Continuous thrust stationkeeping in Earth-Moon L 1 halo orbits based on LQR control and Floquet theory. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2014-4140, San Diego, CA (2014)Google Scholar
  29. 64.
    Otten, M., McInnes, C.R.: Near minimum-time trajectories for solar sails. J. Guid. Control. Dyn. 24, 632–634 (2001)CrossRefGoogle Scholar
  30. 66.
    Pavlak, T.A., Howell, K.C.: Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2012-4665, Minneapolis (2012)Google Scholar
  31. 69.
    Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)MathSciNetCrossRefGoogle Scholar
  32. 70.
    Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3, 543–548 (1980)CrossRefGoogle Scholar
  33. 73.
    Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control. Dyn. 40, 1085–1105 (2017)CrossRefGoogle Scholar
  34. 74.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  35. 78.
    Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic, New York (1967)zbMATHGoogle Scholar
  36. 79.
    Tewari, A.: Modern Control Design with MATLAB and Simulink. Wiley, Chichester (2002)Google Scholar
  37. 80.
    Tewari, A.: Atmospheric and Space Flight Dynamics–Modeling and Simulation with MATLAB and Simulink. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
  38. 82.
    Thurman, R., Worfolk, P.A.: Geometry of halo orbits in the circular restricted three-body problem. Technical Report GCG95, University of Minnesota, Minneapolis (1996)Google Scholar
  39. 84.
    Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 CASTALIA. Celest. Mech. Dyn. Astron. 65, 313–344 (1996)zbMATHGoogle Scholar
  40. 85.
    Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht (1978)Google Scholar
  41. 87.
    Yang, H., Bai, X., Baoyin, H.: Rapid generation of time-optimal trajectories for asteroid landing via convex optimization. J. Guid. Control. Dyn. 40, 628–641 (2017)CrossRefGoogle Scholar
  42. 88.
    Zhang, C., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control. Dyn. 38, 1501–1509 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashish Tewari
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of Technology, KanpurIIT-KanpurIndia

Personalised recommendations