Skip to main content

Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Ultrafast Intense Laser Science

  • Chapter
  • First Online:

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 118))

Abstract

We present the time-dependent complete-active-space self-consistent-field (TD-CASSCF) method to simulate multielectron dynamics in ultrafast intense laser fields from the first principles. While based on multiconfiguration expansion, it divides the orbital space into frozen-core (tightly bound electrons with no response to the field), dynamical-core (electrons tightly bound but responding to the field), and active (fully correlated to describe highly excited and ejected electrons) orbital subspaces. The subspace decomposition can be done flexibly, conforming to phenomena under investigation and desired accuracy. The method is gauge invariant and size extensive. Infinite-range exterior complex scaling in addition to mask-function boundary is adopted as an efficient absorbing boundary. We show numerical examples and illustrate how to extract relevant physical quantities such as ionization yield, high-harmonic spectrum, and photoelectron spectrum from our full-dimensional implementation for atoms. The TD-CASSCF method will open a way to the ab initio simulation study of ultrafast intense laser science in realistic atoms and molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is not to be confused with a similar but different concept of size consistency, which, for the case of the ground-state energy, states “if molecule AB dissociates to molecules A and B, the asymptote of molecule AB at infinite internuclear separation should be the sum of the energies of molecules A and B” [55] and “is only defined if the two fragments are non-interacting” [56].

References

  1. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  2. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  3. T. Popmintchev, M.C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O.D. Mucke, A. Pugzlys, A. Baltuška, B. Shim, S.E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaroń-Becker, M.M. Murnane, H.C. Kapteyn, Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Z. Chang, Fundamentals of Attosecond Optics (CRC Press, Boca Raton, FL, 2011)

    Book  Google Scholar 

  5. L. Plaja, R. Torres, A. Zaïr (eds.), Attosecond Physics, vol. 177, Springer Series in Optical Sciences (Springer, Berlin, 2013)

    Google Scholar 

  6. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004)

    Article  ADS  Google Scholar 

  7. S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb, P. Salières, Nat. Phys. 6, 200 (2010)

    Article  Google Scholar 

  8. P. Salières, A. Maquet, S. Haessler, J. Caillat, R. Taïeb, Rep. Prog. Phys. 75, 062401 (2012)

    Article  ADS  Google Scholar 

  9. P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

    Article  ADS  Google Scholar 

  10. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  11. L. Gallmann, C. Cirelli, U. Keller, Annu. Rev. Phys. Chem. 63, 447 (2013)

    Article  ADS  Google Scholar 

  12. T. Sekikawa, A. Kosuge, T. Kanai, S. Watanabe, Nature 432, 605 (2004)

    Article  ADS  Google Scholar 

  13. Y. Nabekawa, H. Hasegawa, E.J. Takahashi, K. Midorikawa, Phys. Rev. Lett. 94, 043001 (2005)

    Article  ADS  Google Scholar 

  14. M.S. Pindzola, F. Robicheaux, Phys. Rev. A 57, 318 (1998)

    Article  ADS  Google Scholar 

  15. M.S. Pindzola, F. Robicheaux, J. Phys. B 31, L823 (1998)

    Article  ADS  Google Scholar 

  16. J. Colgan, M.S. Pindzola, F. Robicheaux, J. Phys. B 34, L457 (2001)

    Article  ADS  Google Scholar 

  17. J.S. Parker, L.R. Moore, K.J. Meharg, D. Dundas, K.T. Taylor, J. Phys. B 34, L69 (2001)

    Article  ADS  Google Scholar 

  18. S. Laulan, H. Bachau, Phys. Rev. A 68, 013409 (2003)

    Article  ADS  Google Scholar 

  19. B. Piraux, J. Bauer, S. Laulan, H. Bachau, Eur. Phys. J. D 26, 7 (2003)

    Article  ADS  Google Scholar 

  20. S. Laulan, H. Bachau, Phys. Rev. A 69, 033408 (2004)

    Article  ADS  Google Scholar 

  21. K.L. Ishikawa, K. Midorikawa, Phys. Rev. A 72, 013407 (2005)

    Article  ADS  Google Scholar 

  22. J. Feist, S. Nagele, R. Pazourek, E. Persson, B.I. Schneider, L.A. Collins, J. Burgdörfer, Phys. Rev. Lett. 103, 063002 (2009)

    Article  ADS  Google Scholar 

  23. R. Pazourek, J. Feist, S. Nagele, E. Persson, B.I. Schneider, L.A. Collins, J. Burgdörfer, Phys. Rev. A 83, 053418 (2011)

    Article  ADS  Google Scholar 

  24. K.L. Ishikawa, K. Ueda, Phys. Rev. Lett. 108, 033003 (2012)

    Article  ADS  Google Scholar 

  25. S. Sukiasyan, K.L. Ishikawa, M. Ivanov, Phys. Rev. A 86, 033423 (2012)

    Article  ADS  Google Scholar 

  26. K.L. Ishikawa, K. Ueda, Appl. Sci. 3, 189 (2013)

    Article  Google Scholar 

  27. W. Vanroose, D.A. Horner, F. Martín, T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 74, 052702 (2006)

    Article  ADS  Google Scholar 

  28. D.A. Horner, S. Miyabe, T.N. Rescigno, C.W. McCurdy, F. Morales, F. Martín, Phys. Rev. Lett. 101, 183002 (2008)

    Article  ADS  Google Scholar 

  29. T.-G. Lee, M.S. Pindzola, F. Robicheaux, J. Phys. B 43, 165601 (2010)

    Article  ADS  Google Scholar 

  30. K.L. Ishikawa, T. Sato, IEEE J. Sel. Top. Quantum Electron. 21, 8700916 (2015)

    Google Scholar 

  31. E. Lötstedt, T. Kato, K. Yamanouchi, in Progress in Ultrafast Intense Laser Science XIII, ed. by K. Yamanouchi, W.T. Hill III, G.G. Paulus (Springer, Berlin, 2017), p. 15

    Google Scholar 

  32. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrinzi, Laser Phys. 13, 1064 (2003)

    Google Scholar 

  33. T. Kato, H. Kono, Chem. Phys. Lett. 392, 533 (2004)

    Article  ADS  Google Scholar 

  34. J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005)

    Article  ADS  Google Scholar 

  35. T. Sato, K.L. Ishikawa, Phys. Rev. A 88, 023402 (2013)

    Article  ADS  Google Scholar 

  36. T. Sato, K.L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, J. Burgdörfer, Phys. Rev. A 94, 023405 (2016)

    Article  ADS  Google Scholar 

  37. Y. Orimo, T. Sato, A. Scrinzi, K.L. Ishikawa, Phys. Rev. A 97, 023423 (2018)

    Article  ADS  Google Scholar 

  38. A.D. Bandrauk, F. Fillion-Gourdeau, E. Lorin, J. Phys. B 46, 153001 (2013)

    Article  ADS  Google Scholar 

  39. R.P. Miranda, A.J. Fisher, L. Stella, A.P. Horsfield, J. Chem. Phys. 134, 244101 (2011)

    Article  ADS  Google Scholar 

  40. L. Greenman, P.J. Ho, S. Pabst, E. Kamarchik, D.A. Mazziotti, R. Santra, Phys. Rev. A 82, 023406 (2010)

    Article  ADS  Google Scholar 

  41. M.S. Pindzola, D.C. Griffin, C. Bottcher, Phys. Rev. Lett. 66, 2305 (1991)

    Article  ADS  Google Scholar 

  42. J. Frenkel, Wave Mechanics-Advanced General Theory (Clarendon Press, Oxford, 1934)

    MATH  Google Scholar 

  43. P.-O. Löwdin, P. Mukherjee, Chem. Phys. Lett. 14, 1 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Moccia, Int. J. Quant. Chem. 7, 779 (1973)

    Article  Google Scholar 

  45. T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 62, 032706 (2000)

    Article  ADS  Google Scholar 

  46. C.W. McCurdy, M.B.N. Rescigno, J. Phys. B 37, R137 (2004)

    Article  Google Scholar 

  47. B.I. Schneider, L.A. Collins, S.X. Hu, Phys. Rev. E 73, 036708 (2006)

    Article  ADS  Google Scholar 

  48. B.I. Schneider, J. Feist, S. Nagele, R. Pazourek, S.X. Hu, L.A. Collins, J. Burgdörfer, in Quantum Dynamic Imaging, ed. by A.D. Bandrauk, M. Ivanov (Springer, New York, 2011), p. 149

    Chapter  Google Scholar 

  49. D. Hochstuhl, M. Bonitz, J. Chem. Phys. 134, 084106 (2011)

    Article  ADS  Google Scholar 

  50. J.J. Omiste, W. Li, L.B. Madsen, Phys. Rev. A 95, 053422 (2017)

    Article  ADS  Google Scholar 

  51. E. Lötstedt, T. Kato, K. Yamanouchi, Phys. Rev. A 97, 013423 (2018)

    Article  ADS  Google Scholar 

  52. T. Sato, T. Teramura, K.L. Ishikawa, Appl. Sci. 8, 433 (2018)

    Article  Google Scholar 

  53. T. Sato, K.L. Ishikawa, Phys. Rev. A 91, 023417 (2015)

    Article  ADS  Google Scholar 

  54. H. Miyagi, L.B. Madsen, Phys. Rev. A 89, 063416 (2014)

    Article  ADS  Google Scholar 

  55. T. Veszprémi, M. Fehér, Quantum Chemistry: Fundamentals to Applications (Springer, Berlin, 1999)

    Book  Google Scholar 

  56. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2017)

    Google Scholar 

  57. H. Flocard, S.E. Koonin, M.S. Weiss, Phys. Rev. C 17, 1682 (1978)

    Article  ADS  Google Scholar 

  58. J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. A 45, 4998 (1992)

    Article  ADS  Google Scholar 

  59. C.W. McCurdy, C.K. Stroud, M.K. Wisinski, Phys. Rev. A 43, 5980 (1991)

    Article  ADS  Google Scholar 

  60. A. Scrinzi, Phys. Rev. A 81, 053845 (2010)

    Article  ADS  Google Scholar 

  61. W. Gautschi, Math. Comput. Simul. 54, 403 (2000)

    Article  MathSciNet  Google Scholar 

  62. M. Weinmbcller, M. Weinmbcller, J. Rohland, A. Scrinzi, J. Comput. Phys. 333, 199 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  63. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994)

    Article  ADS  Google Scholar 

  64. S. Larochelle, A. Talebpour, S.L. Chin, J. Phys. B. 31, 1201 (1998)

    Article  ADS  Google Scholar 

  65. I. Tikhomirov, T. Sato, K.L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017)

    Article  ADS  Google Scholar 

  66. H.J. Wörner, H. Niikura, J.B. Bertrand, P.B. Corkum, D.M. Villeneuve, Phys. Rev. Lett. 102, 103901 (2009)

    Article  ADS  Google Scholar 

  67. A. Gordon, F.X. Katner, N. Rohringer, R. Santra, Phys. Rev. Lett. 96, 223902 (2006)

    Article  ADS  Google Scholar 

  68. L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)

    Article  ADS  Google Scholar 

  69. R. Wehlitz, D. Lukić, J.B. Bluett, Phys. Rev. A 68, 052708 (2003)

    Article  ADS  Google Scholar 

  70. K.C. Prince, E. Allaria, C. Callegari, R. Cucini, G. De Ninno, S. Di Mitri, B. Diviacco, E. Ferrari, P. Finetti, D. Gauthier, L. Giannessi, N. Mahne, G. Penco, O. Plekan, L. Raimondi, P. Rebernik, E. Roussel, C. Svetina, M. Trovò, M. Zangrando, M. Negro, P. Carpeggiani, M. Reduzzi, G. Sansone, A.N. Grum-Grzhimailo, E.V. Gryzlova, S.I. Strakhova, K. Bartschat, N. Douguet, J. Venzke, D. Iablonskyi, Y. Kumagai, T. Takanashi, K. Ueda, A. Fischer, M. Coreno, F. Stienkemeier, Y. Ovcharenko, T. Mazza, M. Meyer, Nat. Photonics 10, 176 (2016)

    Article  ADS  Google Scholar 

  71. D. Iablonskyi, K. Ueda, K.L. Ishikawa, A.S. Kheifets, P. Carpeggiani, M. Reduzzi, H. Ahmadi, A. Comby, G. Sansone, T. Csizmadia, S. Kuehn, E. Ovcharenko, T. Mazza, M. Meyer, A. Fischer, C. Callegari, P. Finetti, E. Allaria, E. Ferrari, E. Roussel, D. Gauthier, L. Giannessi, K.C. Prince, Phys. Rev. Lett. 119, 073203 (2017)

    Article  ADS  Google Scholar 

  72. R. Sawada, T. Sato, K.L. Ishikawa, Phys. Rev. A 93, 023434 (2016)

    Article  ADS  Google Scholar 

  73. T. Sato, H. Pathak, Y. Orimo, K.L. Ishikawa, J. Chem. Phys. 148, 051101 (2018)

    Article  ADS  Google Scholar 

  74. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 91, 023412 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  75. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 95, 033414 (2017)

    Article  ADS  Google Scholar 

  76. R. Anzaki, T. Sato, K.L. Ishikawa, Phys. Chem. Chem. Phys. 19, 22008 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research (Grants No. 23750007, No. 23656043, No. 23104708, No. 25286064, No. 26390076, No. 26600111, No. 16H03881, and 17K05070) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and also by the Photon Frontier Network Program of MEXT. This research was also partially supported by the Center of Innovation Program from the Japan Science and Technology Agency, JST, and by CREST (Grant No. JPMJCR15N1), JST. Y. O. gratefully acknowledges support from the Graduate School of Engineering, The University of Tokyo, Doctoral Student Special Incentives Program (SEUT Fellowship). O. T. gratefully acknowledges support from the Japanese Government (MEXT) Scholarship. We thank I. Březinová, F. Lackner, S. Nagele, J. Burgdörfer, and A. Scrinzi for fruitful collaborations that have greatly contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi L. Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, T., Orimo, Y., Teramura, T., Tugs, O., Ishikawa, K.L. (2018). Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Ultrafast Intense Laser Science. In: Yamanouchi, K., Martin, P., Sentis, M., Ruxin, L., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XIV. Springer Series in Chemical Physics(), vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-03786-4_8

Download citation

Publish with us

Policies and ethics