Skip to main content

Laser-Induced Alignment and Orientation Dynamics Beyond the Rigid-Rotor Approximation

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XIV

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 118))

  • 638 Accesses

Abstract

We introduce theoretical methods we developed, with which the laser-induced alignment and/or orientation dynamics of polyatomic molecules can be investigated beyond the rigid rotor approximation. The time-dependent Schrödinger equation is solved by expanding the laser-induced wave packet in terms of the field-free rovibrational eigenstates of the system. We present the results of highly accurate numerical calculations on the laser-induced alignment dynamics of floppy and weakly-bound H2He + and rigid- and strongly-bound H2O , and investigate the effect of the vibrational excitations on the alignment dynamics. We show that one-photon vibrational excitations induce changes in the light-induced alignment and orientation dynamics through the changes in the molecular structure, leading to the breakdown of the rigid rotor approximation, and through the changes in the optical selections in the rotational excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Stapefeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  2. Y. Ohshima, H. Hasegawa, Int. Rev. Phys. Chem. 29, 619 (2010)

    Article  Google Scholar 

  3. M. Lemeshko, R.V. Krems, J.M. Doyle, S. Kais, Mol. Phys. 111, 1648 (2013)

    Article  ADS  Google Scholar 

  4. A. Rouze´e, A. Gijsbertsen, M.J.J. Vrakking, in Progress in Ultrafast Intense Laser Science, vol VI, Chap. 3 (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  5. O. Faucher, B. Lavorel, E. Hertz, F. Chaussard, in Progress in Ultrafast Intense Laser Science, vol VII, Chap. 4 (Springer, Berlin, Heidelberg, 2011)

    Google Scholar 

  6. H. Hasegawa, Y. Ohshima, in Progress in Ultrafast Intense Laser Science, vol XII, Chap. 3 (Springer International Publishing, Switzerland, 2015)

    Google Scholar 

  7. T. Szidarovszky, M. Jono, K. Yamanouchi, Comput. Phys. Commun. 228, 219 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Floß, T. Grohmann, M. Leibscher, T. Seideman, J. Chem. Phys. 136, 084309 (2012)

    Article  ADS  Google Scholar 

  9. C.M. Dion, A. Keller, O. Atabek, A.D. Bandrauk, Phys. Rev. A 59, 1382 (1999)

    Article  ADS  Google Scholar 

  10. A.A. Søndergaard, R.E. Zillich, H. Stapelfeldt, J. Chem. Phys. 147, 074304 (2017)

    Google Scholar 

  11. A. Owens, E.J. Zak, K.L. Chubb, S.N. Yurchenko, J. Tennyson, A. Yachmenev, Sci. Rep. 7, 45068 (2017)

    Google Scholar 

  12. P.R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998)

    Google Scholar 

  13. A.G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, G. Czakó, Phys. Chem. Chem. Phys. 14, 1085 (2012). and references therein

    Article  Google Scholar 

  14. J. Tennyson, J. Chem. Phys. 145, 120901 (2016). and references therein

    Article  ADS  Google Scholar 

  15. T. Szidarovszky, K. Yamanouchi, Mol. Phys. (André D. Bandrauk Special Issue) 115, 1916 (2017)

    Google Scholar 

  16. K. Schuh, P. Rosenow, M. Kolesik, E.M. Wright, S.W. Koch, J.V. Moloney, Phys. Rev. A 96, 043818 (2017)

    Article  ADS  Google Scholar 

  17. D. De Fazio, M. de Castro-Vitores, A. Aguado, V. Aquilanti, S. Cavalli, J. Chem. Phys. 137, 244306 (2012)

    Article  ADS  Google Scholar 

  18. D. Papp, A.G. Császár, K. Yamanouchi, T. Szidarovszky, J. Chem. Theory Comput. 14, 1523 (2018)

    Article  Google Scholar 

  19. A.G. Császár, E. Mátyus, T. Szidarovszky, L. Lodi, N.F. Zobov, S.V. Shirin, O.L. Polyansky, J. Tennyson, J. Quant. Spectr. Rad. Transfer 111(9), 1043–1064 (2010)

    Article  ADS  Google Scholar 

  20. V. Barone, M. Biczysko, J. Blonio, Phys. Chem. Chem. Phys. 16, 1759 (2014)

    Article  Google Scholar 

  21. S.N. Yurchenko, W. Thiel, P. Jensen, Mol. Spectrosc. 245, 126 (2007)

    Article  ADS  Google Scholar 

  22. J.M. Bowman, S. Carter, X.-C. Huang, Int. Rev. Phys. Chem. 22, 533 (2003)

    Article  Google Scholar 

  23. C. Fábri, E. Mátyus, A. G. Császár, J. Chem. Phys. 134, 074105 (2011)

    Google Scholar 

  24. R.N. Zare, Angular Momentum (Wiley, New York, 1988)

    Google Scholar 

  25. V. Makhija, X. Ren, V. Kumarappan, Phys. Rev. A 85, 033425 (2012)

    Google Scholar 

  26. C.G.J. Jacobi, Cr. Hebd, Acad. Sci. 15, 236 (1842)

    Google Scholar 

  27. T. Szidarovszky, A.G. Császár, G. Czakó, Phys. Chem. Chem. Phys. 12, 8373 (2010)

    Article  Google Scholar 

  28. J.C. Light, T. Carrington Jr., Adv. Chem. Phys. 114, 263 (2000)

    Google Scholar 

  29. T. Szidarovszky, A.G. Császár, Mol. Phys. (Martin Quack Special Issue) 111, 2131 (2013)

    Google Scholar 

  30. P. Barletta, S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, E.F. Valeev, A.G. Császár, J. Chem. Phys. 125, 204307 (2006)

    Article  ADS  Google Scholar 

  31. L. Lodi, J. Tennyson, O.L. Polyansky, J. Chem. Phys. 135, 034113 (2011)

    Article  ADS  Google Scholar 

  32. G. Avila, J. Chem. Phys. 122, 144310 (2005)

    Article  ADS  Google Scholar 

  33. P. Palmieri, C. Puzzarini, V. Aquilanti, G. Capecchi, S. Cavalli, D. DeFazio, A. Aguilar, X. Giménez, J.M. Lucas, Mol. Phys. 98, 1835 (2000)

    Article  ADS  Google Scholar 

  34. M. Juřek, V. Špirko, W.P. Kraemer, J. Mol. Sprectrosc. 182, 364 (1997)

    Article  ADS  Google Scholar 

  35. M. Šindelka, V. Špirko, W.P. Kraemer, Theor. Chem. Acc. 110, 170 (2003)

    Article  Google Scholar 

  36. J. Tennyson, S. Miller, J. Chem. Phys. 87, 6648 (1987)

    Article  ADS  Google Scholar 

  37. J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, M.R. Carleer, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothmam, A.C. Vandaele, N.F. Zobov, A.R. Al Derzi, C. Fábri, A.Z. Fazliev, T. Furtenbacher, I.E. Gordon, L. Lodi, I.I. Mizus, J. Quant. Spectrosc. Radiat. Transfer 117, 29 (2013)

    Google Scholar 

  38. A.G. Császár, G. Czakó, T. Furtenbacher, J. Tennyson, V. Szalay, S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Chem. Phys. 122, 214305 (2005)

    Article  ADS  Google Scholar 

  39. G. Czakó, E. Mátyus, A.G. Császár, J. Phys. Chem. A 113, 11665–11678 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support from the Grant-in-Aid (Tokubetsu Kenkyuin Shorei-hi) scientific research fund of JSPS (Japan Society for the Promotion of Science), project number 26-04333, the JSPS KAKENHI Grant No. 15H05696, and the NKFIH Grant No. PD124623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Szidarovszky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szidarovszky, T., Yamanouchi, K. (2018). Laser-Induced Alignment and Orientation Dynamics Beyond the Rigid-Rotor Approximation. In: Yamanouchi, K., Martin, P., Sentis, M., Ruxin, L., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XIV. Springer Series in Chemical Physics(), vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-03786-4_2

Download citation

Publish with us

Policies and ethics