Skip to main content

Description of Measurement Methods and Parameters Useful in the Study of the Level of Adhesion of Layered Systems Made of Cement Composites

  • Chapter
  • First Online:
Book cover Adhesion in Layered Cement Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 101))

  • 442 Accesses

Abstract

Momayez et al. (Cem Concr Res 35(4):748–757, 2005 [1]) compared the most commonly used methods for evaluating the level of adhesion in layered systems made of cement composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Momayez, A., Ehsani, M. R., Ramezanianpour, A. A., & Rajaie, H. (2005). Comparison of methods for evaluating bond strength between concrete substrate and repair materials. Cement and Concrete Research, 35(4), 748–757.

    Article  CAS  Google Scholar 

  2. Bonaldo, E., Barros, J. A., & Lourenço, P. B. (2005). Bond characterization between concrete substrate and repairing SFRC using pull-off testing. International Journal of Adhesion and Adhesives, 25(6), 463–474.

    Article  CAS  Google Scholar 

  3. EN 1504. Products and systems for the protection and repair of concrete structures.

    Google Scholar 

  4. Concrete Repair Manual. (2003). ACI International, Farmington Hills.

    Google Scholar 

  5. Long, A.E., & Murray, A. (1984). The pull-off partially destructive test for concrete. ACI Materials Journal, ACI SP-82 327–350.

    Google Scholar 

  6. Mathey, R.G., & Knab, L.I. (1991). Uniaxial tensile tested to measure the bond of in-situ concrete overlays. NISTIR 4648.

    Google Scholar 

  7. Stehno, G., & Mall, G. (1977). The tear-off method, a new way to determine the quality of concrete in structures on site. In RILEM International, Symposium on Testing In Situ of Concrete Structures (pp. 335–347), Budapest.

    Google Scholar 

  8. Bungey, J. H., & Mandandoust, R. (1992). Influencing pull-off tests in concrete. Magazine of Concrete Research, 44(158), 21–30.

    Article  CAS  Google Scholar 

  9. Bai, Y., Basheer, P.A.M., Cleland, D.J., & Long, A.E. (2009). State-of-the-art applications of the pull-off test in civil engineering. International Journal of Structural Engineering, 1(1), 93–103.

    Article  Google Scholar 

  10. Xie, H., Li, G., Xiong, G. (2002). Microstructure model of the interfacial zone between fresh and old concrete. Journal of Wuhan University of Technology—Materials Science Edition 17, 64–68. EN 1542. (2006). Products and systems for the protection and repair of concrete structures–Test methods–Measurement of bond strength by pull-off.

    Google Scholar 

  11. ASTM D7234. (2005). Standard test method for pull-off adhesion strength of coatings on concrete using portable pull-off adhesion testers.

    Google Scholar 

  12. Bissonnette, B., Vaysburd, A.M., & von Fay, K.F. (2012). Best practices for preparing concrete surfaces prior to repairs and overlays (No. MERL 12-17).

    Google Scholar 

  13. Beushausen, H.D. (2005). Long-term performance of bonded overlays subjected to differential shrinkage (p. 264). Ph.D. Thesis, University of Cape Town, South Africa.

    Google Scholar 

  14. Vaysburd, A.M., & McDonald, J.E. (1999). An evaluation of equipment and procedures for tensile bond testing of concrete repairs (p. 65). U.S. Army Corps of Engineers, Technical Report REMR-CS-61.

    Google Scholar 

  15. Austin, S., Robins, P., & Pan, Y. (1995). Tensile bond testing of concrete repairs. Materials and Structures, 28(179), 249–259.

    Article  CAS  Google Scholar 

  16. Garbacz, A., Courard, L., & Kostana, K. (2006). Characterization of concrete surface roughness and its relation to adhesion in repair systems. Materials Characterization, 56(4–5), 281–289.

    Article  CAS  Google Scholar 

  17. Garbacz, A., Górka, M., & Courard, L. (2005). Effect of concrete surface treatment on adhesion in repair systems. Magazine of Concrete Research, 57, 49–60.

    Article  Google Scholar 

  18. Ghavidel, R., Madandoust, R., & Ranjbar, M. M. (2015). Reliability of pull-off test for steel fiber reinforced self-compacting concrete. Measurement, 73, 628–639.

    Article  Google Scholar 

  19. Gould, R.G. (1959). The LASER, light amplification by stimulated emission of radiation. In P.A. Franken, R.H. Sands (Eds.), The ann arbor conference on optical pumping. The University of Michigan, 15 June through 18 June 1959.

    Google Scholar 

  20. Pernkopf, F., & O’Leary, P. (2003). Image acquisition techniques for automatic visual inspection of metallic surfaces. NDT and E International, 36(8), 609–617.

    Article  Google Scholar 

  21. Czarnecki, S., Hoła, J., & Sadowski, Ł. (2015). The use of a 3D scanner for evaluating the morphology of a sandblasted concrete surface. In Key Engineering Materials (Vol. 662, pp. 193–196). Trans Tech Publications.

    Google Scholar 

  22. de Groot, P. J. (2017). The meaning and measure of vertical resolution in optical surface topography measurement. Applied Sciences, 7(1), 54.

    Article  Google Scholar 

  23. Santos, P., & Júlio, E. (2010). Effect of filtering on texture assessment of concrete surfaces. ACI Materials Journal, 107(1), 31–36.

    Google Scholar 

  24. ISO 25178. Geometrical Product Specification (GPS)—Surface Texture: Areal. Surface texture indications (Part 1); Terms, definitions and surface texture parameters.

    Google Scholar 

  25. Sadowski, L., & Mathia, T. G. (2015). The metrology of ground concrete surfaces morphology with 3D laser scanner. Management and Production Engineering Review, 6(2), 40–44.

    Article  Google Scholar 

  26. Stout, K.J., Sullivan, P.J., Dong, W.P., Mainsah, E., Luo, N., Mathia, T., & Zahouani, H. (1993). The development of methods for the characterisation of roughness in three dimensions. In Commission of the European Communities (Ed.), ISBN 0 7044 1313.

    Google Scholar 

  27. Brown, C. A., Johnsen, W. A., & Hult, K. M. (1998). Scale-sensitivity, fractal analysis and simulations. International Journal of Machine Tools and Manufacture, 38(5), 633–637.

    Article  Google Scholar 

  28. Grzelka, M., Majchrowski, R., & Sadowski, Ł. (2011). Investigations of concrete surface roughness by means of 3D scanner. Proceedings of Electrotechnical Institute, 16.

    Google Scholar 

  29. ASTM C1740. (2010). Standard practice for evaluating the condition of concrete plates using the impulse-response method.

    Google Scholar 

  30. Ottosen, N., Ristinmmaa, M., & Davis, A. (2004). Theoretical interpretation of impulse-response tests of embedded concrete structures. Journal of Engineering Mechanics, 130(9), 1062–1071.

    Article  Google Scholar 

  31. Davis, A. G. (2003). The nondestructive impulse-response test in North America: 1985–2001. NDT & E International, 36(4), 185–193.

    Article  Google Scholar 

  32. Lin, S., Meng, D., Choi, H., Shams, S., & Azari, H. (2018). Laboratory assessment of nine methods for nondestructive evaluation of concrete bridge decks with overlays. Construction and Building Materials, 188, 966–982.

    Article  Google Scholar 

  33. Standard test method for measuring the P-wave speed and the thickness of concrete plates using the impact-echo method. (1998). American Society for Testing and Materials.

    Google Scholar 

  34. Sansalone, M., & Streett, W. (1997). Impact-echo: nondestructive evaluation of concrete and masonry. Ithaca: Bullbrier Press.

    Google Scholar 

  35. Qian, J., You, C., Wang, Q., Wang, H., & Jia, X. (2014). A method for assessing bond performance of cement-based repair materials. Construction and Building Materials, 68, 307–313.

    Article  Google Scholar 

  36. Stock, S. R. (2008). Microcomputed tomography: methodology and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  37. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. Journal of Optical Society ofAmerica, 1(6), 612–619.

    Article  Google Scholar 

  38. Sneddon, I. N. (1965). The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1), 47–57.

    Article  Google Scholar 

  39. Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3–20.

    Article  CAS  Google Scholar 

  40. Bobko, C., & Ulm, F. J. (2008). The nano-mechanical morphology of shale. Mechanics of Materials, 40(4), 318–337.

    Article  Google Scholar 

  41. Constantinides, G., Ulm, F. J., & Van Vliet, K. (2003). On the use of nanoindentation for cementitious materials. Materials and Structures, 36(3), 191–196.

    Article  CAS  Google Scholar 

  42. Constantinides, G., Chandran, K. R., Ulm, F. J., & Van Vliet, K. J. (2006). Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Materials Science and Engineering A, 430(1), 189–202.

    Article  Google Scholar 

  43. Luković, M., Šavija, B., Dong, H., Schlangen, E., & Ye, G. (2014). Micromechanical study of the interface properties in concrete repair systems. Journal of Advanced Concrete Technology, 12(9), 320–339.

    Article  Google Scholar 

  44. Zhou, J., Ye, G., & van Breugel, K. (2016). Cement hydration and microstructure in concrete repairs with cementitious repair materials. Construction and Building Materials, 112, 765–772.

    Article  CAS  Google Scholar 

  45. Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. Berlin: Springer.

    Google Scholar 

  46. Sadowski, Ł. (2017). Multi-scale evaluation of the interphase zone between the overlay and concrete substrate: methods and descriptors. Applied Sciences, 7(9), 893.

    Article  Google Scholar 

  47. Hoła, J., Sadowski, Ł. (2012). Testing interlayer pull-off adhesion in concrete floors by means of nondestructive acoustic methods. In 18th World Conference on Non Destructive Testing, Durban.

    Google Scholar 

  48. Sadowski, Ł. (2013). Analysys of the effect of concrete base roughness on the pull-off adhesion of the topping layer (in Polish). Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ). 1, 39–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Sadowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadowski, Ł. (2019). Description of Measurement Methods and Parameters Useful in the Study of the Level of Adhesion of Layered Systems Made of Cement Composites. In: Adhesion in Layered Cement Composites. Advanced Structured Materials, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-03783-3_4

Download citation

Publish with us

Policies and ethics