Skip to main content

Principal Factors Influencing the Level of Adhesion in Layered Systems Made of Cement Composites

  • Chapter
  • First Online:
  • 484 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 101))

Abstract

Figure 3.1 attempts to classify the principal factors that influence the level of adhesion in layered systems made of cement composites. These factors have been previously described in detail by other researchers, for example by Wall and Shrive (Wall and Shrive in ACI Materials 95:117–125, 1998 [1]), Emmons and Vaysburd (Emmons and Vaysburd in Factors affecting durability of concrete repair, Edinburgh, UK, pp. 253–267 (1993) [2]) or Czarnecki and Chmielewska (Czarnecki and Chmielewska in Cement Wapno Beton 2:74–85 (2005) [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wall, J. S., & Shrive, N. G. (1988). Factors affecting bond between new and old concrete. ACI Materials, 95(2), 117–125.

    Google Scholar 

  2. Emmons, P. H., & Vaysburd, A. M. (1993) Factors affecting durability of concrete repair. In Proceedings of Fifth International Conference on Structural Faults and Repair, Edinburgh, UK (pp. 253–267).

    Google Scholar 

  3. Czarnecki, L., & Chmielewska, B. (2005). Factors affecting adhesion in building joints. Cement Wapno Beton, 2, 74–85.

    Google Scholar 

  4. Silfwerbrand, J. (1990). Improving concrete bond in repaired bridge decks. Concrete International, 12(9), 61–66.

    CAS  Google Scholar 

  5. Sadowski, Ł., & Mathia, T. G. (2016). Multi-scale metrology of concrete surface morphology: Fundamentals and specificity. Construction and Building Materials, 113, 613–621.

    Article  CAS  Google Scholar 

  6. Rousseau, J., & Mathia, T. G. (1993). Physique des solides et morphologie des surfaces. Acta Physica Polonica A, 83(5), 535–550. (in French).

    Article  CAS  Google Scholar 

  7. Santos, P., & Julio, E. (2013). A state-of-the-art review on roughness quantification methods for concrete surfaces. Construction and Building Materials, 38, 912–923.

    Article  Google Scholar 

  8. Mathia, T. G., Zahouani, H., Rousseau, J., & Le Bosse, J. C. (1995). Functional significance of different techniques for surface morphology measurements. International Journal of Machine Tools and Manufacture, 35(2), 195–202.

    Article  Google Scholar 

  9. Leach, R., & Sherlock, B. (2014). Applications of super-resolution imaging in the field of surface topography measurement. Surface Topography: Metrology and Properties, 2(2), 023001.

    Google Scholar 

  10. Garbacz, A., Courard, L., & Bissonnette, B. (2013). A surface engineering approach applicable to concrete repair engineering. Bulletin of The Polish Academy of Sciences: Technical Sciences, 61–1, 73–84.

    Article  Google Scholar 

  11. Sezen, H., & Fisco, N. (2013). Evaluation and comparison of surface macrotexture and friction measurement methods. Journal of Civil Engineering and Management, 19–3, 387–399.

    Article  Google Scholar 

  12. Santos, P. M. D., & Júlio, E. N. B. S. (2010). Comparison of methods for texture assessment of concrete surfaces. ACI Materials Journal, 107(5).

    Google Scholar 

  13. Mathia, T. G., Pawlus, P., & Wieczorowski, M. (2011). Recent trends in surface metrology. Wear, 271(3), 494–508.

    Article  CAS  Google Scholar 

  14. Siewczyńska, M. (2008). Effect of selected parametres of concrete on the adhesion to the coatings (in Polish) (Ph.D. thesis). Poznan University of Technology, Poznań.

    Google Scholar 

  15. Sadowski, Ł., Czarnecki, S., & Hoła, J. (2015). Evaluation of the height 3D roughness parameters of concrete substrate and the adhesion to epoxy resin. International Journal of Adhesion and Adhesives, 67, 3–13.

    Article  CAS  Google Scholar 

  16. Abu-Tair, A. I., Rigden, S. R., & Burley, E. (1996). Testing the bond between repair materials and concrete substrate. ACI Materials Journal, 93(6), 553–558.

    CAS  Google Scholar 

  17. Abu-Tair, A. I., Lavery, D., Nadjai, A., Rigden, S. R., & Ahmed, T. M. A. (2000). A new method for evaluating the surface roughness of concrete cut for repair or strengthening. Construction and Building Materials, 14(3), 171–176.

    Article  Google Scholar 

  18. Santos, P., & Julio, E. (2007). Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Construction and Building Materials, 21(8), 1688–1695.

    Article  Google Scholar 

  19. Santos, D. S., Santos, P. M., & Dias-da-Costa, D. (2012). Effect of surface preparation and bonding agent on the concrete-to-concrete interface strength. Construction and Building Materials, 37, 102–110.

    Article  Google Scholar 

  20. Júlio, E., Branco, F., Silva, V., & Lourenço, J. (2006). Influence of added concrete compressive strength on adhesion to an existing concrete substrate. Building and Environment, 41(12), 1934–1939.

    Article  Google Scholar 

  21. Julio, E., Branco, F., & Silva, V. (2004). Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Construction and Building Materials 18(9), 675–681.

    Article  Google Scholar 

  22. Júlio, E., Branco, F., & Silva, V. (2005). Concrete-to-concrete bond strength: Influence of an epoxy-based bonding agent on a roughened substrate surface. Magazine of Concrete Research, 57(8), 463–468.

    Article  Google Scholar 

  23. Santos, P., & Júlio, E. (2011). Factors affecting bond between new and old concrete. ACI Materials Journal, 108(4), 449–456.

    Google Scholar 

  24. Santos, P., & Julio, E. (2008). Development of a laser roughness analyser to predict in situ the bond strength of concrete-to-concrete interfaces. Magazine of Concrete Research, 60(5), 329–337.

    Article  Google Scholar 

  25. Garbacz, A., Górka, M., & Courard, L. (2005). Effect of concrete surface treatment on adhesion in repair systems. Magazine of Concrete Research, 57, 49–60.

    Article  Google Scholar 

  26. Garbacz, A., Courard, L., & Kostana, K. (2006). Characterization of concrete surface roughness and its relation to adhesion in repair systems. Materials Characterization, 56(4–5), 281–289.

    Article  CAS  Google Scholar 

  27. Courard, L. (2002). Evaluation of thermodynamic properties of concrete substrates and cement slurries modified by admixtures. Materials and Structures, 35(3), 149–155.

    Article  CAS  Google Scholar 

  28. Courard, L. (2005). Adhesion of repair systems to concrete: Influence of interfacial topography and transport phenomena. Magazine of Concrete Research, 57(5), 273–282.

    Article  CAS  Google Scholar 

  29. Courard, L., & Nélis, M. (2003). Surface analysis of mineral substrates for repair works: Roughness evaluation by profilometry and surfometry analysis. Magazine of Concrete Research, 55(4), 355–366.

    Article  CAS  Google Scholar 

  30. Mansour, F. R., Bakar, S. A., Ibrahim, I. S., Marsono, A. K., & Marabi, B. (2015). Flexural performance of a precast concrete slab with steel fiber concrete topping. Construction and Building Materials, 75, 112–120.

    Article  Google Scholar 

  31. Zanotti, C., Rostagno, G., & Tingley, B. (2018). Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs. Construction and Building Materials, 160, 775–785.

    Article  CAS  Google Scholar 

  32. Abu-Tair, A., Lavery, D., Rigden, A., & Ahmed, T. (2000). A new method for evaluating the surface roughness of concrete cut for repair or strengthening. Construction and Building Materials 171–176.

    Article  Google Scholar 

  33. Santos, P., Julio, E., Silva, V. (2007). Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Construction and Building Materials 1688–1695.

    Article  Google Scholar 

  34. Al-Kheetan, M. J., Rahman, M. M., & Chamberlain, D. A. (2017). Influence of early water exposure on modified cementitious coating. Construction and Building Materials, 141, 64–71.

    Article  CAS  Google Scholar 

  35. Xie, H., Li, G., Xiong, G. (2002). Microstructure model of the interfacial zone between fresh and old concrete. Journal of Wuhan University of Technology—Materials Science Edition 17, 64–68; EN 1542. (2006). Products and systems for the protection and repair of concrete structures–Test methods–Measurement of bond strength by pull-off.

    Google Scholar 

  36. Tanikura, I., Shintani, R., Sainoki, A., Watanabe, S., & Obara, Y. (2018). Quantitative comparison of chipping-and hydrodemolition-induced microscopic damage evolution in concrete substrates. Construction and Building Materials, 164, 193–205.

    Article  Google Scholar 

  37. Talbot, C., Pigeon, M., Beaupré, D., & Morgan, D. R. (1994). Influence of surface preparation on long-term bonding of shotcrete. ACI Materials Journal, 91(6), 560–566.

    CAS  Google Scholar 

  38. He, Y., Mote, J., & Lange, D. A. (2013). Characterization of microstructure evolution of cement paste by micro computed tomography. Journal of Central South University, 20, 1115–1121.

    Article  CAS  Google Scholar 

  39. Mirmoghtadaei, R., Mohammadi, M., Samani, N. A., & Mousavi, S. (2015). The impact of surface preparation on the bond strength of repaired concrete by metakaolin containing concrete. Construction and Building Materials, 80, 76–83.

    Article  Google Scholar 

  40. Courard, L., Piotrowski, T., & Garbacz, A. (2014). Near-to-surface properties affecting bond strength in concrete repair. Cement & Concrete Composites, 46, 73–80.

    Article  CAS  Google Scholar 

  41. Kreijger, P. C. (1984). The skin of concrete composition and properties. Matériaux et Construction, 17(4), 275–283.

    Article  Google Scholar 

  42. Zheng, J. J., Li, C. Q., & Jones, M. R. (2003). Aggregate distribution in concrete with wall effect. Magazine of Concrete Research, 55(3), 257–265.

    Article  CAS  Google Scholar 

  43. De Caro, P., Djelalf, C., Libessartit, L., & Dubois, I. (2007). Influence of the nature of the demoulding agent on the properties of the formwork-concrete. Magazine of Concrete Research, 59(2), 141–149.

    Article  Google Scholar 

  44. Safawi, M. I., Iwaki, I., & Miura, T. (2004). The segregation tendency in the vibration of high fluidity concrete. Cement and Concrete Research, 34(2), 219–226.

    Article  CAS  Google Scholar 

  45. Bentur, A., & Jaegermann, C. (1991). Effect of curing and composition on the properties of the outer skin of concrete. Journal of Materials in Civil Engineering, 3(4), 252–262.

    Article  Google Scholar 

  46. Glinicki, M. A., & Zielinski, M. (2009). Frost salt scaling resistance of concrete containing CFBC fly ash. Materials and Structures, 42(7), 993–1002.

    Article  CAS  Google Scholar 

  47. Courard, L., & Darimont, A. (1998). Appetency and adhesion: analysis of the kinetcs of contact between concrete and repairing mortars. Interfacial Zone in Concrete 185–194.

    Google Scholar 

  48. Bonaldo, E., Barros, J. A., & Lourenço, P. B. (2005). Bond characterization between concrete substrate and repairing SFRC using pull-off testing. International Journal of Adhesion and Adhesives, 25(6), 463–474.

    Article  CAS  Google Scholar 

  49. Andrade, C., Dı́ez, J. M., & Alonso, C. (1997). Mathematical modeling of a concrete surface “skin effect” on diffusion in chloride contaminated media. Advanced Cement Based Materials 6(2), 39–44.

    Article  CAS  Google Scholar 

  50. Baltazar, L., Santana, J., Lopes, B., Rodrigues, M. P., & Correia, J. R. (2014). Surface skin protection of concrete with silicate-based impregnations: influence of the substrate roughness and moisture. Construction and Building Materials, 70, 191–200.

    Article  Google Scholar 

  51. EN 13791. (2007) Assessment of in-situ compressive strength in structures and pre-cast concrete components.

    Google Scholar 

  52. Stawiski, B. (2012). The heterogeneity of mechanical properties of concrete in formed constructions horizontally. Archives of Civil and Mechanical Engineering 12(1), 90–94.

    Article  Google Scholar 

  53. Hoła, J., Sadowski, Ł., & Hoła, A. The effect of failure to comply with technological and technical requirements on the condition of newly built cement mortar floors. In: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

    Google Scholar 

  54. Qian, Y., Zhang, D., & Ueda, T. (2016). Interfacial tensile bond between substrate concrete and repairing mortar under freeze-thaw cycles. Journal of advanced concrete technology, 14(8), 421–432.

    Article  CAS  Google Scholar 

  55. Beushausen, H., & Arito, P. (2018). The influence of mix composition, w/b ratio and curing on restrained shrinkage cracking of cementitious mortars. Construction and Building Materials, 174, 38–46.

    Article  Google Scholar 

  56. Girhammar U., & Pajari M. (2008). Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping. Construction and Building Materials 22(8), 1708–1722.

    Article  Google Scholar 

  57. Chilwesa, M., Minelli, F., Reggia, A., & Plizzari, G. (2017). Evaluating the shear bond strength between old and new concrete through a new test method. Magazine of Concrete Research, 69(9), 425–435.

    Article  Google Scholar 

  58. Beushausen, H., & Alexander, M. G. (2008). Bond strength development between concretes of different ages. Magazine of concrete research, 60(1), 65–74.

    Article  Google Scholar 

  59. Bungey, J. H., & Soutsos, M. N. (2001). Reliability of partially-destructive tests to assess the strength of concrete on site. Construction and Building Materials, 15(2–3), 81–92.

    Article  Google Scholar 

  60. Dellate, N. J., Wade, D. M., & Fowler, D. W. (2000) Laboratory and field testing of concrete bond development for expedited concrete overlays. ACI Materials Journal (3), May–June 2000, 272–280.

    Google Scholar 

  61. Mangat, P. S., & Limbachiya, M. K. (1995). Repair material properties which influence long-term performance of concrete structures. Construction and Building Materials, 9(2), 81–90.

    Article  Google Scholar 

  62. Shin, H.-C., & Lange, D. A. (2004). Effects of shrinkage and temperature in bonded concrete overlays. ACI Materials Journal, 101, 358–364.

    Google Scholar 

  63. Beushausen, H., & Alexander, M. G. (2006). Failure mechanisms and tensile relaxation of bonded concrete overlays subjected to differential shrinkage. Cement and Concrete Research, 36, 1908–1914.

    Article  CAS  Google Scholar 

  64. Silfwerbrand, J., & Paulsson, J. (1998). The swedish experience: better bonding of bridge deck overlays. Concrete International, 20(10), 56–61.

    Google Scholar 

  65. Zhu, Y. (1992). Effect of surface moisture condition on bond strength between new and old concrete. Bulletin No. 159, Department of Structural Mechanics and Engineering, Royal Institute of Technology, Stockholm (27 pp).

    Google Scholar 

  66. Li, S. E., Geissert D. G., Frantz, G. C., & Stephens J. E. (1999). Freeze-thaw bond durability of rapid-setting concrete repair materials. ACI Material Journal (2), March–April 1999, 241–249.

    Google Scholar 

  67. Courard, L., Lenaers, J. F., Michel, F., & Garbacz, A. (2011). Saturation level of the superficial zone of concrete and adhesion of repair systems. Construction and Building Materials, 25(5), 2488–2494.

    Article  Google Scholar 

  68. Zhou, J., Ye, G., & van Breugel, K. (2016). Cement hydration and microstructure in concrete repairs with cementitious repair materials. Construction and Building Materials, 112, 765–772.

    Article  CAS  Google Scholar 

  69. Beushausen, H., Höhlig, B., & Talotti, M. (2017). The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ. Cement and Concrete Research, 92, 84–91.

    Article  CAS  Google Scholar 

  70. Bentz, D. P., De la Varga, I., Muñoz, J. F., Spragg, R. P., Graybeal, B. A., Hussey, D. S. … LaManna, J. M. (2018). Influence of substrate moisture state and roughness on interface microstructure and bond strength: Slant shear vs. pull-off testing. Cement and Concrete Composites 87, 63–72.

    Article  CAS  Google Scholar 

  71. Santos, D. S., Santos, P. M., & Dias-da-Costa, D. (2012). Effect of surface preparation and bonding agent on the concrete-to-concrete interface strength. Construction and Building Materials, 37, 102–110.

    Article  Google Scholar 

  72. Xiong, G., Liu, J., Li, G., & Xie, H. (2002). A way for improving interfacial transition zone between concrete substrate and repair materials. Cement and Concrete Research, 32(12), 1877–1881.

    Article  CAS  Google Scholar 

  73. Xiong, G., Luo, B., Wu, X., Li, G., & Chen, L. (2006). Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials. Cement and Concrete Composites, 28(1), 97–101.

    Article  CAS  Google Scholar 

  74. Beushausen, H. (2010). The influence of concrete substrate preparation on overlay bond strength. Magazine of Concrete Research, 62(11), 845–852.

    Article  Google Scholar 

  75. Clímaco, J. D. S., & Regan, P. E. (2001). Evaluation of bond strength between old and new concrete in structural repairs. Magazine of Concrete Research, 53(6), 377–390.

    Article  Google Scholar 

  76. Błaszczyński, T., Jasiczak, J., Ksit, B., & Siewczyńska, M. (2006). Aspects of bond layer role in concrete repairs. Archives of Civil and Mechanical Engineering, 6(4), 75–87.

    Article  Google Scholar 

  77. Pareek, S. N., Ohama, Y., & Demura, K. (1990). Adhesion mechanism of ordinary cement mortar to mortar substrates by polymer dispersion coatings. In Proceedings of the 6th ICPIC 1, 442–449.

    Google Scholar 

  78. Pretorius J., & Kruger D. (2001). The influence of surface roughness on the bond strength of concrete repairs. In Proceedings 10th ICPIC 13, CD-ROM.

    Google Scholar 

  79. Garbacz, A., Courard, L., & Bissonnette, B. (2013). A surface engineering approach applicable to concrete repair engineering. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 73–84.

    Article  Google Scholar 

  80. Diab, A. M., Elmoaty, A. E. M. A., & Eldin, M. R. T. (2017). Slant shear bond strength between self compacting concrete and old concrete. Construction and Building Materials, 130, 73–82.

    Article  CAS  Google Scholar 

  81. Courard, L. (2000). Parametric study for the creation of the interface between concrete and repair products. Materials and Structures, 33(1), 65.

    Article  CAS  Google Scholar 

  82. Pruijssers, A. F. (1988). Aggregate interlock and dowel action under monotonic and cyclic loading. Delft University of Technology.

    Google Scholar 

  83. Randl, N., Münger, F., & Wicke, M. (2005). Verstärkung von Brückentragwerken durch Aufbeton. Bauingenieur, 4, 207–214.

    Google Scholar 

  84. Figueira, D., Sousa, C., Calçada, R., & Neves, A. S. (2015). Push-off tests in the study of cyclic behavior of interfaces between concretes cast at different times. Journal of Structural Engineering, 142(1), 04015101.

    Article  Google Scholar 

  85. Tayeh, B. A., Bakar, B. A., Johari, M. M., & Voo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Construction and Building Materials, 36, 538–548.

    Article  Google Scholar 

  86. Malheiro, R., Meira, G., Lima, M., & Perazzo, N. (2011). Influence of mortar rendering on chloride penetration into concrete structures. Cement & Concrete Composites, 33(2), 233–239.

    Article  CAS  Google Scholar 

  87. Qian, J., You, C., Wang, Q., Wang, H., & Jia, X. (2014). A method for assessing bond performance of cement-based repair materials. Construction and Building Materials, 68, 307–313.

    Article  Google Scholar 

  88. Barroso De Aguiar, J., & Cruz, M. D. (1998). A study of the adhesion between hydraulic mortars and concrete. Journal of Adhesion Science and Technology, 12(11), 1243–1251.

    Article  CAS  Google Scholar 

  89. Schrader, E. K. (1992). Mistakes, misconceptions, and controversial issues concerning concrete and concrete repairs. Part 1, 2 and 3, Concrete International 9, 10, 11.

    Google Scholar 

  90. Gulyas, R. J., Wirthlin, G. J., & Champa, J. T. (1995). Evaluation of keyway grout test methods for precast concrete bridges. PCI Journal (1), January–February, 44–57.

    Article  Google Scholar 

  91. Block, K., & Porth M. Spritzbeton auf carbonatisiertem Beton Haftzugfestigkeit.

    Google Scholar 

  92. Hoła, J., Bień, J., Sadowski, Ł., & Schabowicz, K. (2015). Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(1), 87–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Sadowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadowski, Ł. (2019). Principal Factors Influencing the Level of Adhesion in Layered Systems Made of Cement Composites. In: Adhesion in Layered Cement Composites. Advanced Structured Materials, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-03783-3_3

Download citation

Publish with us

Policies and ethics