Skip to main content

Background

  • Chapter
  • First Online:
Adhesion in Layered Cement Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 101))

  • 476 Accesses

Abstract

Cement composite should be understood as a material made up of a minimum of two components: a cement matrix and aggregate, in such a way that it should have properties superior to the components considered separately. The layered systems made of cement composites and that are used in construction typically consist of an overlay with a constant or variable thickness, usually made of cement mortar and a substrate, for which mainly concrete is used for their construction (Fig. 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czarnecki, L., & Chmielewska, B. (2005). Factors affecting adhesion in building joints. Cement Wapno Beton, 2, 74–85.

    Google Scholar 

  2. EN 12504-3. (2006). Analysis of concrete in constructions. Part 3: Determination of the pull-off force. Warsaw: PKN.

    Google Scholar 

  3. Adams, R., & Drinkwater, B. (1997). Nondestructive testing of adhesively-bonded joints. NDT and E International, 30(2), 93–98.

    Article  Google Scholar 

  4. Sadowski, Ł. (2017). Multi-scale evaluation of the interphase zone between the overlay and concrete substrate: Methods and descriptors. Applied Sciences, 7(9), art, 893.

    Article  CAS  Google Scholar 

  5. Felt, E. J. (1956). Resurfacing and patching concrete pavement with bonded concrete. In Proceedings of Highway Research Board (pp. 444–479).

    Google Scholar 

  6. Douglas, H. (2001). Online etymology dictionary. October 20, 2007. http://www.etymonline.com.

  7. Bissonnette, B., Courard, L., & Garbacz, A. (2015). Concrete surface engineering. Boca Raton: CRC Press.

    Google Scholar 

  8. Kinloch, A. J. (1987). Adhesion and adhesives: Science and technology. London: Chapman and Hall.

    Book  Google Scholar 

  9. Weiss, H. (1995). Adhesion of advanced overlay coatings: Mechanisms and quantitative assessment. Surface & Coatings Technology, 71(2), 201–207.

    Article  CAS  Google Scholar 

  10. Mathia, T., Louis, F., Maeder, G., & Mairey, D. (1982). Relationships between surface states, finishing processes and engineering properties. Wear, 83(2), 241–250.

    Article  CAS  Google Scholar 

  11. Petrie, E. M. (2000). Handbook of adhesives and sealants (p. 765). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  12. Czarnecki, L. (2008, September). Adhesion—A challenge for concrete repair. In Concrete Repair, Rehabilitation and Retrofitting II: 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-2 (p. 343), 24–26 November 2008. Cape Town, South Africa: CRC Press.

    Google Scholar 

  13. Kinloch, A. J. (1980). The science of adhesion: Part 1—Surface and interfacial aspects. Journal of Materials Science, 15, 2141–2166.

    Article  CAS  Google Scholar 

  14. Cardon, A. H., & Hiel, C. C. (1986). Durability analysis of adhesive joints. In RILEM Symposium on Resin Adherence to Concrete (pp. 3–7). Paris.

    Google Scholar 

  15. Emmons, P. H., & Vaysburd, A. M. (1993). Factors affecting durability of concrete repair. In Proceedings of Fifth International Conference on Structural Faults and Repair (pp. 253–267). Edinburgh, UK.

    Google Scholar 

  16. Pigeon, M., & Saucier, F. (1992). Durability of repaired concrete structures. In Proceedings of International Symposium on Advances in Concrete Technology (pp. 741–773), Athens, October 11–12.

    Google Scholar 

  17. Zhou, J., Ye, G., & van Breugel, K. (2016). Cement hydration and microstructure in concrete repairs with cementitious repair materials. Construction and Building Materials, 112, 765–772.

    Article  CAS  Google Scholar 

  18. Beushausen, H., Höhlig, B., & Talotti, M. (2017). The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ. Cement and Concrete Research, 92, 84–91.

    Article  CAS  Google Scholar 

  19. Espeche, A. D., & Leon, J. (2009). Estimation of bond strength envelopes for old-to-new concrete interfaces based on a cylinder splitting test. Construction and Building Materials, 25, 1222–1235.

    Article  Google Scholar 

  20. He, Y., Zhang, X., Hooton, R. D., & Zhang, X. (2017). Effects of interface roughness and interface adhesion on new-to-old concrete bonding. Construction and Building Materials, 151, 582–590.

    Article  Google Scholar 

  21. Xie, H., Li, G., Xiong, G. (2006). Microstructure model of the interfacial zone between fresh and old concrete. Journal of Wuhan University of Technology—Mater Science Edition 2002, 17, 64–68; EN 1542. (2006). Products and systems for the protection and repair of concrete structures—Test methods—Measurement of bond strength by pull-off.

    Google Scholar 

  22. Adawi, A., Youssef, M. A., & Meshaly, M. E. (2015). Experimental investigation of the composite action between hollowcore slabs with machine-cast finish and concrete topping. Engineering Structures, 91, 1–15.

    Article  Google Scholar 

  23. Halicka, A. (2011). Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams. Construction and Building Materials, 25, 4072–4078.

    Article  Google Scholar 

  24. Mansour, F. R., Bakar, S. A., Vafaei, M., & Alih, S. C. (2017). Effect of substrate surface roughness on the flexural performance of concrete slabs strengthened with a steel-fiber-reinforced concrete layer. PCI Journal, 62, 78–89.

    Google Scholar 

  25. Niwa, J., Matsumoto, K., Sato, Y., Yamada, M., & Yamauchi, T. (2016). Experimental study on shear behavior of the interface between old and new deck slabs. Engineering Structures, 126, 278–291.

    Article  Google Scholar 

  26. Cavaco, E., & Camara, J. (2017). Experimental research on the behaviour of concrete-to-concrete interfaces subjected to a combination of shear and bending moment. Engineering Structures, 132, 278–287.

    Article  Google Scholar 

  27. Fernandes, H., Lúcio, V., & Ramos, A. (2017). Strengthening of RC slabs with reinforced concrete overlay on the tensile face. Engineering Structures, 132, 540–550.

    Article  Google Scholar 

  28. Mansour, F. R., Bakar, S. A., Ibrahim, I. S., Marsono, A. K., & Marabi, B. (2015). Flexural performance of a precast concrete slab with steel fiber concrete topping. Construction and Building Materials, 75, 112–120.

    Article  Google Scholar 

  29. Perez, F., Bissonnette, B., & Gagné, R. (2009). Parameters affecting the debonding risk of bonded overlays used on reinforced concrete slab subjected to flexural loading. Materials and Structures, 42, 645–662.

    Article  CAS  Google Scholar 

  30. Garbacz, A. (2015). Application of stress based NDT methods for concrete repair bond quality control. Bulletin of the Polish Academy of Sciences Technical Sciences, 63, s77–s85.

    Article  CAS  Google Scholar 

  31. Sadowski, Ł., & Hoła, J. (2015). artificial neural network modeling of pull-off adhesion of concrete layers. Advanced Engineering Software, 89, 17–27.

    Article  Google Scholar 

  32. Sadowski, Ł. (2015). Non-destructive identification of pull-off adhesion between concrete layers. Automation in Construction, 57, 146–155.

    Article  Google Scholar 

  33. Sadowski, Ł., & Hoła, J. (2014). New nondestructive way of identifying the values of pull-off adhesion between concrete layers in floors. Journal of Civil Engineering and Management, 20, 561–569.

    Article  Google Scholar 

  34. Mohamad, M. E., Ibrahim, I. S., Abdullah, R., Rahman, A. A., Kueh, A. B. H., & Usman, J. (2015). Friction and cohesion coefficients of composite concrete-to-concrete bond. Cement and Concrete Composites, 56, 1–14.

    Article  CAS  Google Scholar 

  35. Tayeh, B. A., Bakar, B. A., Johari, M. M., & Ratnam, M. M. (2013). The relationship between substrate roughness parameters and bond strength of ultra high-performance fiber concrete. Journal of Adhesion Science and Technology, 27, 1790–1810.

    Article  CAS  Google Scholar 

  36. Siewczyńska, M. (2012). Method for determining the parameters of surface roughness by usage of a 3D scanner. Archives of Civil and Mechanical Engineering, 12, s83–s89.

    Article  Google Scholar 

  37. Garbacz, A. (2007). Non-destructive testing of concrete-like polymeric composites using elastic waves—Evaluation of repair efficiency (p. 208). Warsaw, Poland: Publishing House of Warsaw University of Technology.

    Google Scholar 

  38. Tsioulou, O., Lampropoulos, A., & Paschalis, S. (2017). Combined Non-Destructive Testing (NDT) method for the evaluation of the mechanical characteristics of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Construction and Building Materials, 131, 66–77.

    Article  CAS  Google Scholar 

  39. Szymanowski, J., & Sadowski, Ł. (2015). Adhesion assessment between concrete layers using the ultrasonic Pulse velocity method. Applied Mechanics and Materials, 797, 145–150.

    Article  Google Scholar 

  40. Prem, P. R., & Murthy, A. R. (2016). Acoustic emission and flexural behaviour of RC beams strengthened with UHPC overlay. Construction and Building Materials, 123, 481–492.

    Article  Google Scholar 

  41. Iowa Department of Transportation, Donohue & Associates, Inc. Engineers & Architects. (1988). Evaluation of bond retain age in Portland cement concrete overlays by infrared thermography and ground penetrating radar, HR-537. Fort Wayne, IN, USA: Iowa Department of Transportation, Donohue & Associates, Inc.

    Google Scholar 

  42. Mallat, A., & Alliche, A. (2011). Mechanical investigation of two fiber-reinforced repair mortars and the repaired system. Construction and Building Materials, 25, 1587–1595.

    Article  Google Scholar 

  43. Tayeh, B. A., Bakar, B. A., Johari, M. M., & Voo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Construction and Building Materials, 36, 538–548.

    Article  Google Scholar 

  44. Beushausen, H., Höhlig, B., & Talotti, M. (2017). The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ. Cement and Concrete Research, 92, 84–91.

    Article  CAS  Google Scholar 

  45. Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Zeyad, A. M. (2014). Microstructural analysis of the adhesion mechanism between old concrete substrate and UHPFC. Journal of Adhesion Science and Technology, 28, 1846–1864.

    Article  CAS  Google Scholar 

  46. Satoh, A., & Yamada, K. (2016). FEM simulation of tension struts on adhesion performance of mortar–repair interface. Engineering Fracture Mechanics, 167, 84–100.

    Article  Google Scholar 

  47. Lukovic, M., & Ye, G. (2015). Effect of moisture exchange on interface formation in the repair system studied by X-ray absorption. Materials, 9. https://doi.org/10.3390/ma9010002.

    Article  Google Scholar 

  48. Luković, M., Šavija, B., Dong, H., Schlangen, E., & Ye, G. (2014). Micromechanical study of the interface properties in concrete repair systems. Journal of Advanced Concrete Technology, 12, 320–339.

    Article  CAS  Google Scholar 

  49. Czarnecki. L., Garbacz, A. (2007). Adhesion of interfaces of building materials: A multi-scale approach. In Advances in materials science and restoration (p. 260). Freiburg im Breisgau, Germany: Aedificatio Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Sadowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadowski, Ł. (2019). Background. In: Adhesion in Layered Cement Composites. Advanced Structured Materials, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-03783-3_2

Download citation

Publish with us

Policies and ethics