Skip to main content

Pediatric Molecular Imaging

  • Chapter
  • First Online:
  • 857 Accesses

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Molecular imaging technologies allow in vivo detection, characterization, and quantification of cellular and molecular processes that control cancer development and progression. In the past, invasive procedures such as tissue biopsy and surgery have been used to obtain cellular and molecular information of pediatric cancers. Recent technological advances have enabled us to develop imaging techniques that can generate some of this information noninvasively in vivo. Over the past two decades, many novel molecular imaging technologies were developed in basic science labs to improve the detection, characterization, and treatment monitoring of pediatric cancers. A number of these technologies are now being successfully translated to medical imaging applications and are being used to inform the care of pediatric cancer patients. The continued development, testing, and refinement of these novel imaging techniques will significantly impact the future of pediatric cancer diagnoses and, thereby, long-term outcomes. This chapter will provide an overview of molecular imaging technologies that are available for pediatric patients to date, discuss emerging new technologies, and provide an outlook on possible future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92:897–965.

    Article  CAS  PubMed  Google Scholar 

  2. Voss SD. Pediatric oncology and the future of oncological imaging. Pediatr Radiol. 2011;41(Suppl 1):S172–85.

    Article  PubMed  Google Scholar 

  3. Su L, Dong Q, Zhang H, et al. Clinical application of a three-dimensional imaging technique in infants and young children with complex liver tumors. Pediatr Surg Int. 2016;32:387–95.

    Article  PubMed  Google Scholar 

  4. Zhang G, Zhou XJ, Zhu CZ, Dong Q, Su L. Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma. Surg Oncol. 2016;25:236–43.

    Article  PubMed  Google Scholar 

  5. Kiessling I, Bzyl J, Kiessling F. Molecular ultrasound imaging and its potential for paediatric radiology. Pediatr Radiol. 2011;41:176–84.

    Article  PubMed  Google Scholar 

  6. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004;3:527–32.

    Article  CAS  PubMed  Google Scholar 

  7. Willmann JK, Cheng Z, Davis C, et al. Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology. 2008;249:212–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coleman JL, Navid F, Furman WL, McCarville MB. Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. AJR Am J Roentgenol. 2014;202:966–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Willmann JK, Paulmurugan R, Chen K, et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology. 2008;246:508–18.

    Article  PubMed  Google Scholar 

  10. Willmann JK, Bonomo L, Carla Testa A, et al. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol. 2017;35:2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rennert J, Georgieva M, Schreyer AG, et al. Image fusion of contrast enhanced ultrasound (CEUS) with computed tomography (CT) or magnetic resonance imaging (MRI) using volume navigation for detection, characterization and planning of therapeutic interventions of liver tumors. Clin Hemorheol Microcirc. 2011;49:67–81.

    CAS  PubMed  Google Scholar 

  12. Stenzel M, Mentzel HJ. Ultrasound elastography and contrast-enhanced ultrasound in infants, children and adolescents. Eur J Radiol. 2014;83:1560–9.

    Article  PubMed  Google Scholar 

  13. Attia ABE, Chuah SY, Razansky D, et al. Noninvasive real-time characterization of non-melanoma skin cancers with handheld optoacoustic probes. Photoacoustics. 2017;7:20–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wong TTW, Zhang R, Hai P, et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci Adv. 2017;3:e1602168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sinha S, Dogra VS, Chinni BK, Rao NA. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating among malignant, benign, and normal thyroids in an ex vivo study with human thyroids. J Ultrasound Med. 2017;36:2047.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stoffels I, Morscher S, Helfrich I, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7:317ra199.

    Article  PubMed  CAS  Google Scholar 

  17. Gao W, Li S, Liu Z, et al. Targeting and destroying tumor vasculature with a near-infrared laser-activated “nanobomb” for efficient tumor ablation. Biomaterials. 2017;139:1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur Radiol. 2008;18:2021–32.

    Article  PubMed  Google Scholar 

  19. Ahmad M, Kaszubski PA, Cobbs L, Reynolds H, Smith RT. Choroidal thickness in patients with coronary artery disease. PLoS One. 2017;12:e0175691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Seider MI, Grewal DS, Mruthyunjaya P. Portable optical coherence tomography detection or confirmation of ophthalmoscopically invisible or indeterminate active retinoblastoma. Ophthalmic Surg Lasers Imaging Retina. 2016;47:965–8.

    Article  PubMed  Google Scholar 

  21. Lee H, Proudlock FA, Gottlob I. Pediatric optical coherence tomography in clinical practice-recent progress. Invest Ophthalmol Vis Sci. 2016;57:OCT69–79.

    Article  PubMed  Google Scholar 

  22. Mastropasqua L, Borrelli E, Amodei F, et al. Optical coherence tomography angiography in the multimodal imaging evaluation of interferon-associated retinopathy: a case report. Ophthalmic Surg Lasers Imaging Retina. 2017;48:498–504.

    Article  PubMed  Google Scholar 

  23. Meier R, Krug C, Golovko D, et al. ICG-enhanced imaging of arthritis with an integrated optical imaging/X-ray system. Arthritis Rheum. 2010;62:2322.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meier R, Thuermel K, Moog P, et al. Detection of synovitis in the hands of patients with rheumatological disorders: diagnostic performance of optical imaging in comparison to MRI. Arthritis Rheum. 2012;64:2489.

    Article  PubMed  Google Scholar 

  25. Roblyer D, Ueda S, Cerussi A, et al. Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc Natl Acad Sci U S A. 2011;108:14626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheth RA, Upadhyay R, Stangenberg L, Sheth R, Weissleder R, Mahmood U. Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model. Gynecol Oncol. 2009;112:616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prakash N, Uhlemann F, Sheth SA, Bookheimer S, Martin N, Toga AW. Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex. Neuroimage. 2009;47(Suppl 2):T116–26.

    Article  PubMed  Google Scholar 

  28. Predina JD, Okusanya O, DN A, Low P, Singhal S. Standardization and optimization of intraoperative molecular imaging for identifying primary pulmonary adenocarcinomas. Mol Imaging Biol. 2018;20:131.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL. Optical surgical navigation for precision in tumor resections. Mol Imaging Biol. 2017;19:357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao Q, Jiang H, Cao Z, Yang L, Mao H, Lipowska M. A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins. Med Phys. 2011;38:5873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med. 2010;51:46–51.

    Article  PubMed  Google Scholar 

  32. Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med. 2016;57:1887–92.

    Article  CAS  PubMed  Google Scholar 

  33. Van Haren RM, Fitzgerald TL. Intraoperative hand held gamma probe detection of a recurrent nonfunctional neuroendocrine tumor. JOP. 2008;9:704–7.

    PubMed  Google Scholar 

  34. Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:403–18.

    CAS  PubMed  Google Scholar 

  35. Vaccarili M, Lococo A, Fabiani F, Staffilano A. Clinical diagnostic application of 111In-DTPA-octreotide scintigraphy in small cell lung cancer. Tumori. 2000;86:224–8.

    Article  CAS  PubMed  Google Scholar 

  36. O’Dorisio MS, Khanna G, Bushnell D. Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumors of the nervous and endocrine systems in children. Cancer Metastasis Rev. 2008;27:665–77.

    Article  PubMed  Google Scholar 

  37. Park JR, Bagatell R, Cohn SL, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute Clinical trials planning meeting. J Clin Oncol. 2017;35:2580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res. 2002;8:2766–74.

    CAS  PubMed  Google Scholar 

  39. Heneweer C, Grimm J. Clinical applications in molecular imaging. Pediatr Radiol. 2011;41:199–207.

    Article  PubMed  Google Scholar 

  40. Cortes-Funes H. The role of antiangiogenesis therapy: bevacizumab and beyond. Clin Transl Oncol. 2009;11:349–55.

    Article  CAS  PubMed  Google Scholar 

  41. Aguilera DG, Goldman S, Fangusaro J. Bevacizumab and irinotecan in the treatment of children with recurrent/refractory medulloblastoma. Pediatr Blood Cancer. 2011;56:491–4.

    Article  PubMed  Google Scholar 

  42. Cheng G, Chen W, Chamroonrat W, Torigian DA, Zhuang H, Alavi A. Biopsy versus FDG PET/CT in the initial evaluation of bone marrow involvement in pediatric lymphoma patients. Eur J Nucl Med Mol Imaging. 2011;38:1469–76.

    Article  PubMed  Google Scholar 

  43. Riad R, Omar W, Kotb M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:319–29.

    Article  PubMed  Google Scholar 

  44. Morimoto T, Tateishi U, Maeda T, Arai Y, Nakajima Y, Edmund Kim E. Nodal status of malignant lymphoma in pelvic and retroperitoneal lymphatic pathways: comparison of integrated PET/CT with or without contrast enhancement. Eur J Radiol. 2008;67:508–13.

    Article  PubMed  Google Scholar 

  45. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology. 2007;245:839–47.

    Article  PubMed  Google Scholar 

  46. Walter F, Czernin J, Hall T, et al. Is there a need for dedicated bone imaging in addition to 18F-FDG PET/CT imaging in pediatric sarcoma patients? J Pediatr Hematol Oncol. 2012;34:131–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hassan A, Siddique M, Bashir H, et al. 18F-FDG PET-CT imaging versus bone marrow biopsy in pediatric Hodgkin’s lymphoma: a quantitative assessment of marrow uptake and novel insights into clinical implications of marrow involvement. Eur J Nucl Med Mol Imaging. 2017;44:1198–206.

    Article  CAS  PubMed  Google Scholar 

  48. Agrawal K, Mittal BR, Bansal D, et al. Role of F-18 FDG PET/CT in assessing bone marrow involvement in pediatric Hodgkin’s lymphoma. Ann Nucl Med. 2013;27:146–51.

    Article  CAS  PubMed  Google Scholar 

  49. Boktor RR, Omar WS, Mousa E, et al. A preliminary report on the impact of (1)(8)F-FDG PET/CT in the management of paediatric head and neck cancer. Nucl Med Commun. 2012;33:21–8.

    Article  PubMed  Google Scholar 

  50. Begent J, Sebire NJ, Levitt G, et al. Pilot study of F(18)-Fluorodeoxyglucose positron emission tomography/computerised tomography in Wilms’ tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer. 2011;47:389–96.

    Article  PubMed  Google Scholar 

  51. Baum SH, Fruhwald M, Rahbar K, Wessling J, Schober O, Weckesser M. Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med. 2011;52:1535–40.

    Article  CAS  PubMed  Google Scholar 

  52. Ricard F, Cimarelli S, Deshayes E, Mognetti T, Thiesse P, Giammarile F. Additional Benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin Nucl Med. 2011;36:672–7.

    Article  PubMed  Google Scholar 

  53. Piccardo A, Lopci E, Conte M, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39:57–71.

    Article  CAS  PubMed  Google Scholar 

  54. London K, Stege C, Cross S, et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol. 2012;42:418–30.

    Article  PubMed  Google Scholar 

  55. Tateishi U, Hosono A, Makimoto A, et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med. 2009;23:155–61.

    Article  PubMed  Google Scholar 

  56. Costantini DL, Vali R, Chan J, McQuattie S, Charron M. Dual-time-point FDG PET/CT for the evaluation of pediatric tumors. AJR Am J Roentgenol. 2013;200:408–13.

    Article  PubMed  Google Scholar 

  57. Eary JF, Conrad EU. Imaging in sarcoma. J Nucl Med. 2011;52:1903–13.

    Article  PubMed  Google Scholar 

  58. Kruer MC, Kaplan AM, Etzl MM Jr, et al. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol. 2009;95:239–45.

    Article  PubMed  Google Scholar 

  59. Azizi AA, Slavc I, Theisen BE, et al. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [18 F]FDG-PET imaging. Is it of value in asymptomatic patients? Pediatr Blood Cancer. 2018;65(1)

    Google Scholar 

  60. Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases. Bone. 2012;50:128–39.

    Article  PubMed  Google Scholar 

  61. Lin FI, Rao JE, Mittra ES, et al. Prospective comparison of combined (1)(8)F-FDG and (1)(8)F-NaF PET/CT vs. (1)(8)F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging. 2012;39:262–70.

    Article  CAS  PubMed  Google Scholar 

  62. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med. 1995;36:644–50.

    CAS  PubMed  Google Scholar 

  63. Lopci E, Piccardo A, Nanni C, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e73–8.

    Article  PubMed  Google Scholar 

  64. Lee CL, Wahnishe H, Sayre GA, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maraninchi D, Vey N, Viens P, et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma. 1998;31:343–9.

    Article  CAS  PubMed  Google Scholar 

  66. Matthay KK, Weiss B, Villablanca JG, et al. Dose escalation study of no-carrier 131-MIBG for relapsed or refractory neuroblastoma: new approaches to neuroblastoma therapy (NANT) trial. J Nucl Med. 2012;53:1155.

    Article  CAS  PubMed  Google Scholar 

  67. Suh M, Park HJ, Choi HS, So Y, Lee BC, Lee WW. Case report of PET/CT imaging of a patient with neuroblastoma using 18F-FPBG. Pediatrics. 2014;134:e1731–4.

    Article  PubMed  Google Scholar 

  68. Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, Burnazi E, Zhang H, Lewis JS, Blasberg R, Larson SM, Weber WA, Modak S. Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med. 2018;59(1):147–53. https://doi.org/10.2967/jnumed.117.193169.

  69. El-Rabadi K, Weber M, Mayerhofer M, et al. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/contrast-enhanced computed tomography (18F-DOPA PET/CT) in patients with suspected paraganglioma. Anticancer Res. 2016;36:4187–93.

    CAS  PubMed  Google Scholar 

  70. Kong G, Hofman MS, Murray WK, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.

    Article  CAS  PubMed  Google Scholar 

  71. Degnan AJ, Tadros SS, Tocchio S. Pediatric neuroendocrine carcinoid tumors: review of diagnostic imaging findings and recent advances. AJR Am J Roentgenol. 2017;208:868–77.

    Article  PubMed  Google Scholar 

  72. Liu CJ, Lu MY, Liu YL, et al. Risk stratification of pediatric patients with neuroblastoma using volumetric parameters of 18F-FDG and 18F-DOPA PET/CT. Clin Nucl Med. 2017;42:e142–e8.

    Article  PubMed  Google Scholar 

  73. Paulino AC, Margolin J, Dreyer Z, Teh BS, Chiang S. Impact of PET-CT on involved field radiotherapy design for pediatric Hodgkin lymphoma. Pediatr Blood Cancer. 2012;58:860–4.

    Article  PubMed  Google Scholar 

  74. Freudenberg LS, Jentzen W, Marlowe RJ, Koska WW, Luster M, Bockisch A. 124-iodine positron emission tomography/computed tomography dosimetry in pediatric patients with differentiated thyroid cancer. Exp Clin Endocrinol Diabetes. 2007;115:690–3.

    Article  CAS  PubMed  Google Scholar 

  75. Younes A, Hilden P, Coiffier B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017;28:1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ozuah NW, LaCasce AS. How to approach a patient with limited stage hodgkin lymphoma who remains PET positive at the end of chemotherapy: radiation therapy? Clin Lymphoma Myeloma Leuk. 2017;17:710.

    Article  PubMed  Google Scholar 

  77. Bakhshi S, Bhethanabhotla S, Kumar R, et al. Posttreatment PET/CT rather than interim PET/CT using deauville criteria predicts outcome in pediatric hodgkin lymphoma: a prospective study comparing PET/CT with conventional imaging. J Nucl Med. 2017;58:577–83.

    Article  CAS  PubMed  Google Scholar 

  78. Ozuah NW, Dahmoush HM, Grant FD, et al. Pretransplant functional imaging and outcome in pediatric patients with relapsed/refractory Hodgkin lymphoma undergoing autologous transplantation. Pediatr Blood Cancer. 2017;65(1)

    Google Scholar 

  79. Bailly C, Eugene T, Couec ML, et al. Prognostic value and clinical impact of (18)FDG-PET in the management of children with burkitt lymphoma after induction chemotherapy. Front Med. 2014;1:54.

    Article  Google Scholar 

  80. Davis JC, Daw NC, Navid F, et al. FDG uptake during early adjuvant chemotherapy predicts histologic response in pediatric and young adult patients with osteosarcoma. J Nucl Med. 2018;59:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qin Z, Tang Y, Wang H, et al. Use of 18F-FDG-PET-CT for assessment of response to neoadjuvant chemotherapy in children with wilms tumor. J Pediatr Hematol Oncol. 2015;37:396–401.

    Article  CAS  PubMed  Google Scholar 

  82. Soloviev D, Lewis D, Honess D, Aboagye E. [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer. 2012;48:416–24.

    Article  CAS  PubMed  Google Scholar 

  83. Gilles R, Vogel WV, Gidding CE, Janssens GO, van der Vliet TM, Oyen WJ. (18)F-fluoro-L-thymidine-PET for the evaluation of primary brain tumours in children: a report of three cases. Nucl Med Commun. 2010;31:482–7.

    PubMed  Google Scholar 

  84. Pfannenberg C, Aschoff P, Dittmann H, et al. PET/CT with 18F-FLT: does it improve the therapeutic management of metastatic germ cell tumors? J Nucl Med. 2010;51:845–53.

    Article  PubMed  Google Scholar 

  85. Hendrikse NH, Vaalburg W. Dynamics of multidrug resistance: P-glycoprotein analyses with positron emission tomography. Methods. 2002;27:228–33.

    Article  CAS  PubMed  Google Scholar 

  86. Levchenko A, Mehta BM, Lee JB, et al. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J Nucl Med. 2000;41:493–501.

    CAS  PubMed  Google Scholar 

  87. Chan HS, Haddad G, Thorner PS, et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med. 1991;325:1608–14.

    Article  CAS  PubMed  Google Scholar 

  88. Chan HS, Thorner PS, Haddad G, Ling V. Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol. 1990;8:689–704.

    Article  CAS  PubMed  Google Scholar 

  89. Baldini N, Scotlandi K, Barbanti-Brodano G, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333:1380–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kucerova H, Sumerauer D, Drahokoupilova E, Piskova M, Bedrnicek J, Eckschlager T. Significance of P-glycoprotein expression in childhood malignant tumors. Neoplasma. 2001;48:472–8.

    CAS  PubMed  Google Scholar 

  91. Eckert F, Schmitt J, Zips D, et al. Enhanced binding of necrosis-targeting immunocytokine NHS-IL12 after local tumour irradiation in murine xenograft models. Cancer Immunol Immunother. 2016;65:1003–13.

    Article  CAS  PubMed  Google Scholar 

  92. Jansen MH, Lagerweij T, Sewing AC, et al. Bevacizumab targeting diffuse intrinsic pontine glioma: results of 89Zr-bevacizumab PET imaging in brain tumor models. Mol Cancer Ther. 2016;15:2166–74.

    Article  CAS  PubMed  Google Scholar 

  93. Haylock AK, Spiegelberg D, Mortensen AC, et al. Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma. Int J Oncol. 2016;48:461–70.

    Article  CAS  PubMed  Google Scholar 

  94. Spiegelberg D, Mortensen AC, Selvaraju RK, Eriksson O, Stenerlow B, Nestor M. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol Imaging. 2016;43:974–82.

    Article  CAS  PubMed  Google Scholar 

  95. Pool M, Terwisscha van Scheltinga AGT, Kol A, Giesen D, de Vries EGE, Lub-de Hooge MN. 89Zr-Onartuzumab PET imaging of c-MET receptor dynamics. Eur J Nucl Med Mol Imaging. 2017;44:1328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rocha V, Wagner JE Jr, Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342:1846–54.

    Article  CAS  PubMed  Google Scholar 

  97. Ronald JA, Kim BS, Gowrishankar G, et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 2017;77:2893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin North Am. 2011;49:749–65. vi–vii.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brisse HJ, McCarville MB, Granata C, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.

    Article  PubMed  Google Scholar 

  100. Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics. 2011;31:1757–72.

    Article  PubMed  Google Scholar 

  101. Kwee TC, Fijnheer R, Ludwig I, et al. Whole-body magnetic resonance imaging, including diffusion-weighted imaging, for diagnosing bone marrow involvement in malignant lymphoma. Br J Haematol. 2010;149:628–30.

    Article  PubMed  Google Scholar 

  102. Kwee TC, Takahara T, Vermoolen MA, Bierings MB, Mali WP, Nievelstein RA. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40:1592–602. quiz 720–1.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hyder F, Rothman DL. Quantitative fMRI and oxidative neuroenergetics. Neuroimage. 2012;62:985.

    Article  CAS  PubMed  Google Scholar 

  104. Jacobs J, Rohr A, Moeller F, et al. Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia. 2008;49:816–25.

    Article  PubMed  Google Scholar 

  105. Bendini M, Marton E, Feletti A, et al. Primary and metastatic intraaxial brain tumors: prospective comparison of multivoxel 2D chemical-shift imaging (CSI) proton MR spectroscopy, perfusion MRI, and histopathological findings in a group of 159 patients. Acta Neurochir. 2011;153:403–12.

    Article  PubMed  Google Scholar 

  106. Paldino MJ, Faerber EN, Poussaint TY. Imaging tumors of the pediatric central nervous system. Radiol Clin North Am. 2011;49:589–616.

    Article  PubMed  Google Scholar 

  107. Kim H, Catana C, Ratai EM, et al. Serial magnetic resonance spectroscopy reveals a direct metabolic effect of cediranib in glioblastoma. Cancer Res. 2011;71:3745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Punwani S, Taylor SA, Bainbridge A, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology. 2010;255:182–90.

    Article  PubMed  Google Scholar 

  109. Krohmer S, Sorge I, Krausse A, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74:256–61.

    Article  CAS  PubMed  Google Scholar 

  110. Kwee TC, van Ufford HM, Beek FJ, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol. 2009;44:683–90.

    Article  PubMed  Google Scholar 

  111. Kwee TC, Takahara T, Ochiai R, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009;70:409–17.

    Article  PubMed  Google Scholar 

  112. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700–18.

    Article  PubMed  Google Scholar 

  113. Cuccarini V, Erbetta A, Farinotti M, et al. Advanced MRI may complement histological diagnosis of lower grade gliomas and help in predicting survival. J Neurooncol. 2016;126:279.

    Article  CAS  PubMed  Google Scholar 

  114. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging. 2010;10(Spec No A):S179–S188.

    Google Scholar 

  116. Franzius C, Bielack S, Flege S, Sciuk J, Jurgens H, Schober O. Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med. 2002;43:1012–7.

    CAS  PubMed  Google Scholar 

  117. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–95.

    Article  PubMed  Google Scholar 

  118. Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53:845.

    Article  PubMed  Google Scholar 

  119. Samarin A, Burger C, Wollenweber SD, et al. PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154.

    Article  PubMed  Google Scholar 

  120. Schwenzer NF, Stegger L, Bisdas S, et al. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-current state of image quality. Eur J Radiol. 2012;81:3472.

    Article  CAS  PubMed  Google Scholar 

  121. Hirsch FW, Sattler B, Sorge I, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schafer JF, Gatidis S, Schmidt H, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273:220–31.

    Article  PubMed  Google Scholar 

  123. Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46:1258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bezrukov I, Schmidt H, Gatidis S, et al. Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med. 2015;56:1067–74.

    Article  PubMed  Google Scholar 

  125. Purz S, Sabri O, Viehweger A, et al. Potential pediatric applications of PET/MR. J Nucl Med. 2014;55:32S–9S.

    Article  CAS  PubMed  Google Scholar 

  126. Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schafer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.

    Article  CAS  PubMed  Google Scholar 

  127. Klenk C, Gawande R, Tran VT, et al. Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med. 2016;57:70–7.

    Article  CAS  PubMed  Google Scholar 

  128. Daldrup-Link H. How PET/MR can add value for children with cancer. Curr Radiol Rep. 2017;5(3)

    Google Scholar 

  129. Khurana A, Chapelin F, Beck G, et al. Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology. 2013;269:186–97.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Klenk C, Gawande R, Uslu L, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol. 2014;15:275–85.

    Article  PubMed  Google Scholar 

  131. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85:315–9.

    CAS  PubMed  Google Scholar 

  132. Neuwelt EA, Varallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery. 2007;60:601–11. discussion 11–2.

    Article  PubMed  Google Scholar 

  133. Simon GH, von Vopelius-Feldt J, Fu Y, et al. Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest Radiol. 2006;41:45–51.

    Article  PubMed  Google Scholar 

  134. Stabi KL, Bendz LM. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann Pharmacother. 2011;45:1571–5.

    Article  CAS  PubMed  Google Scholar 

  135. Daldrup-Link HE, Golovko D, Ruffel B, et al. MR Imaging of tumor associated macrophages with clinically-applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17:5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Muehe AM, Feng D, von Eyben R, et al. Safety report of ferumoxytol for magnetic resonance imaging in children and young adults. Invest Radiol. 2016;51:221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Clement O, Siauve N, Cuenod CA, Frija G. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging. 1998;9:167–82.

    Article  CAS  PubMed  Google Scholar 

  138. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471–504.

    Article  CAS  PubMed  Google Scholar 

  139. Muehe AM, Theruvath AJ, Lai L, et al. How to provide gadolinium-free PET/MR cancer staging of children and young adults in less than 1 h: the Stanford approach. Mol Imaging Biol. 2018;20:324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ansari C, Tikhomirov GA, Hong SH, et al. Cancer therapy: development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy (small 3/2014). Small. 2014;10:417.

    Article  Google Scholar 

  141. Mohanty S, Chen Z, Li K, et al. A novel theranostic strategy for MMP-14 expressing glioblastomas impacts survival. Mol Cancer Ther. 2017;16:1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pan D, Carauthers SD, Chen J, et al. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem. 2010;2:471–90.

    Article  CAS  PubMed  Google Scholar 

  144. Yu Y, Sun D. Superparamagnetic iron oxide nanoparticle ‘theranostics’ for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Exp Rev Clin Pharmacol. 2010;3:117–30.

    Article  CAS  Google Scholar 

  145. Swan M. Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health. 2009;6:492–525.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chenu O, Vuillerme N, Bucki M, Diot B, Cannard F, Payan Y. TexiCare: an innovative embedded device for pressure ulcer prevention. Preliminary results with a paraplegic volunteer. J Tissue Viability. 2013;22:83–90.

    Article  PubMed  Google Scholar 

  147. Torrado-Carvajal A, Rodriguez-Sanchez MC, Rodriguez-Moreno A, et al. Changing communications within hospital and home health care. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6074–7.

    Google Scholar 

  148. Ali SM, Aijazi T, Axelsson K, Nur O, Willander M. Wireless remote monitoring of glucose using a functionalized ZnO nanowire arrays based sensor. Sensors (Basel). 2011;11:8485–96.

    Article  CAS  Google Scholar 

  149. Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13:7290201400015.

    Article  CAS  Google Scholar 

  150. Fraioli F, Shankar A, Hargrave D, et al. 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med. 2015;40:e40–5.

    Article  PubMed  Google Scholar 

  151. Tsouana E, Stoneham S, Fersht N, et al. Evaluation of treatment response using integrated 18F-labeled choline positron emission tomography/magnetic resonance imaging in adolescents with intracranial non-germinomatous germ cell tumours. Pediatr Blood Cancer. 2015;62:1661–3.

    Article  CAS  PubMed  Google Scholar 

  152. Morana G, Piccardo A, Milanaccio C, et al. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med. 2014;55:718–23.

    Article  CAS  PubMed  Google Scholar 

  153. Morana G, Piccardo A, Puntoni M, et al. Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro Oncol. 2015;17:1637–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bosnyak E, Michelhaugh SK, Klinger NV, et al. Prognostic molecular and imaging biomarkers in primary glioblastoma. Clin Nucl Med. 2017;42:341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Korchi AM, Garibotto V, Ansari M, Merlini L. Pseudoprogression after proton beam irradiation for a choroid plexus carcinoma in pediatric patient: MRI and PET imaging patterns. Childs Nerv Syst. 2013;29:509–12.

    Article  PubMed  Google Scholar 

  156. Gallagher FA, Bohndiek SE, Kettunen MI, Lewis DY, Soloviev D, Brindle KM. Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med. 2011;52:1333–6.

    Article  CAS  PubMed  Google Scholar 

  157. Hu S, Balakrishnan A, Bok RA, et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 2011;14:131–42.

    Article  CAS  PubMed  Google Scholar 

  158. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  159. Sandoval JA, Malkas LH, Hickey RJ. Clinical significance of serum biomarkers in pediatric solid mediastinal and abdominal tumors. Int J Mol Sci. 2012;13:1126–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The work described here was in part supported by a grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, grant number R01 HD081123. There is no conflict of interest or industry support for this project. We thank Eileen Misquez and Becki Perkins for administrative assistance, and we thank Praveen Gulaka, Anne Muehe, Ashok Theruvath, Dawn Holley, and Harsh Gandhi from the Pediatric Molecular Imaging team at Stanford for their help with acquisition of PET/MR scans. We thank the members of the Franc and Daldrup-Link labs for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Elisabeth Daldrup-Link .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franc, B.L., Daldrup-Link, H.E. (2019). Pediatric Molecular Imaging. In: Voss, S., McHugh, K. (eds) Imaging in Pediatric Oncology. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-03777-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03777-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03776-5

  • Online ISBN: 978-3-030-03777-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics