Skip to main content

Radiation Dose Considerations in Pediatric Oncologic Imaging

  • Chapter
  • First Online:
Imaging in Pediatric Oncology

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Increasing awareness of the potential risks of ionizing radiation in imaging has led oncologists and radiologists to review many aspects of how and when pediatric oncology patients are imaged, with a greater emphasis on study justification and dose optimization. In this chapter we will review the background to current concerns regarding potential future increased malignancy risk, discuss dose estimation, provide an overview of dose optimization strategies and typical radiation doses for commonly performed studies, and, finally, discuss some of the issues and challenges around communication with patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCI. SEER cancer statistics review, 1975-2014. Bethesda, MD: National Cancer Institute; 2017. https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.

    Google Scholar 

  2. McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow-up. Pediatr Blood Cancer. 2014;61(1):3–6.

    Article  Google Scholar 

  3. Bhatia S, Yasui Y, Robison LL, et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol. 2003;21(23):4386–94.

    Article  Google Scholar 

  4. Garwicz S, Anderson H, Olsen JH, et al. Second malignant neoplasms after cancer in childhood and adolescence: a population-based case-control study in the 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int J Cancer. 2000;88(4):672–8.

    Article  CAS  Google Scholar 

  5. Ozasa K, Shimizu Y, Suyama A, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res. 2011;177(3):229–43.

    Article  Google Scholar 

  6. National Research Council. Committee to assess health risks from exposure to low levels of ionizing radiation. Health risks from exposure to low levels of ionizing radiation: Beir VII Phase II. Washington, DC: National Academic Press; 2006.

    Google Scholar 

  7. Siegel JA, Pennington CW, Sacks B. Subjecting radiologic imaging to the linear no-threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med. 2017;58(1):1–6.

    Article  Google Scholar 

  8. UNSCotEoAR. Effects of radiation exposure of children. Vol II Annex B. New York, NY: UNSCEAR, United Nations; 2013.

    Google Scholar 

  9. Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol. 2007;80(956):639–47.

    Article  CAS  Google Scholar 

  10. Harrison JD, Balonov M, Martin CJ, et al. Use of effective dose. Ann ICRP. 2016;45(1 Suppl):215–24.

    Article  CAS  Google Scholar 

  11. Fisher DR, Fahey FH. Appropriate use of effective dose in radiation protection and risk assessment. Health Phys. 2017;113(2):102–9.

    Article  CAS  Google Scholar 

  12. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.

    Article  Google Scholar 

  13. Ahmed BA, Connolly BL, Shroff P, et al. Cumulative effective doses from radiologic procedures for pediatric oncology patients. Pediatrics. 2010;126(4):e851–8.

    Article  Google Scholar 

  14. Owens C, Li BK, Thomas KE, Irwin MS. Surveillance imaging and radiation exposure in the detection of relapsed neuroblastoma. Pediatr Blood Cancer. 2016;63(10):1786–93.

    Article  CAS  Google Scholar 

  15. Glatz AC, Purrington KS, Klinger A, et al. Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr. 2014;164(4):789–794.e710.

    Article  Google Scholar 

  16. WHO. Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk. Geneva: World Health Organization; 2016.

    Google Scholar 

  17. Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med. 2011;52(8):1240–51.

    PubMed  Google Scholar 

  18. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  Google Scholar 

  19. Thomas KE. CT update: use, dose variability and diagnostic reference levels. Diagn Imaging Eur. 2012;(July):27–30.

    Google Scholar 

  20. Lee C, Pearce MS, Salotti JA, et al. Reduction in radiation doses from paediatric CT scans in Great Britain. Br J Radiol. 2016;89(1060):20150305.

    Article  Google Scholar 

  21. Chong AL, Grant RM, Ahmed BA, Thomas KE, Connolly BL, Greenberg M. Imaging in pediatric patients: time to think again about surveillance. Pediatr Blood Cancer. 2010;55(3):407–13.

    Article  Google Scholar 

  22. Pierobon J, Webber CE, Nayiager T, Barr RD, Moran GR, Gulenchyn KY. Radiation doses originating from diagnostic procedures during the treatment and follow-up of children and adolescents with malignant lymphoma. J Radiol Prot. 2011;31(1):83–93.

    Article  Google Scholar 

  23. Chawla SC, Federman N, Zhang D, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–6.

    Article  Google Scholar 

  24. Nievelstein RA, Quarles van Ufford HM, Kwee TC, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22(9):1946–54.

    Article  CAS  Google Scholar 

  25. Boutis K, Thomas KE. Radiation dose awareness and disclosure practice in paediatric emergency medicine: how far have we come? Br J Radiol. 2016;89(1061):20160022.

    Article  Google Scholar 

  26. Goske MJ, Applegate KE, Boylan J, et al. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing. J Am Coll Radiol. 2008;5(12):1200–5.

    Article  Google Scholar 

  27. Mayo-Smith WW, Morin RL. Image wisely: the beginning, current status, and future opportunities. J Am Coll Radiol. 2017;14(3):442–3.

    Article  Google Scholar 

  28. SNMMI position statement on dose optimization for nuclear medicine and molecular imaging procedures. 2012. Accessed 22 Dec 2017. http://snmmi.files.cms-plus.com/docs/SNM_Position_Statement_on_Dose_Optimization_FINAL_June_2012.pdf.

  29. Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: a Society for Pediatric Radiology and Children’s Oncology Group Joint Task Force report. Pediatr Blood Cancer. 2013;60(8):1253–60.

    Article  Google Scholar 

  30. Seibel NL, Janeway K, Allen CE, et al. Pediatric oncology enters an era of precision medicine. Curr Probl Cancer. 2017;41(3):194–200.

    Article  Google Scholar 

  31. Towbin AJ, Trout AT, Roebuck DJ. Advances in oncologic imaging. Eur J Pediatr Surg. 2014;24(6):474–81.

    Article  Google Scholar 

  32. Rappaport BA, Suresh S, Hertz S, Evers AS, Orser BA. Anesthetic neurotoxicity--clinical implications of animal models. N Engl J Med. 2015;372(9):796–7.

    Article  CAS  Google Scholar 

  33. Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014;29(10):1927–37.

    Article  Google Scholar 

  34. Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.

    Article  Google Scholar 

  35. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016;37(7):1192–8.

    Article  CAS  Google Scholar 

  36. Racadio JM. Controlling radiation exposure during interventional procedures in childhood cancer patients. Pediatr Radiol. 2009;39(Suppl 1):S71–3.

    Article  Google Scholar 

  37. Goske MJ, Frush DP, Brink JA, Kaste SC, Butler PF, Pandharipande PV. Curbing potential radiation-induced cancer risks in oncologic imaging: perspectives from the ‘image gently’ and ‘image wisely’ campaigns. Oncology (Williston Park). 2014;28(3):232–8. 243.

    Google Scholar 

  38. Nievelstein RA, van Dam IM, van der Molen AJ. Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol. 2010;40(8):1324–44.

    Article  Google Scholar 

  39. Strauss KJ, Goske MJ, Kaste SC, et al. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol. 2010;194(4):868–73.

    Article  Google Scholar 

  40. Nelson TR. Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol. 2014;11(3):292–9.

    Article  Google Scholar 

  41. Hernanz-Schulman M, Goske MJ, Bercha IH, Strauss KJ. Pause and pulse: ten steps that help manage radiation dose during pediatric fluoroscopy. AJR Am J Roentgenol. 2011;197(2):475–81.

    Article  Google Scholar 

  42. Willis CE. Strategies for dose reduction in ordinary radiographic examinations using CR and DR. Pediatr Radiol. 2004;34(Suppl 3):S196–200. discussion S234–141.

    Article  Google Scholar 

  43. Connolly B, Racadio J, Towbin R. Practice of ALARA in the pediatric interventional suite. Pediatr Radiol. 2006;36(Suppl 2):163–7.

    Article  Google Scholar 

  44. Grant FD, Gelfand MJ, Drubach LA, Treves ST, Fahey FH. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. Pediatr Radiol. 2015;45(5):706–13.

    Article  Google Scholar 

  45. Lassmann M, Treves ST, Group ESPDHW. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5. 2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.

    Article  CAS  Google Scholar 

  46. Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 update of the North American Consensus Guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N–8N.

    PubMed  Google Scholar 

  47. Fahey FH, Bom HH, Chiti A, et al. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, Part 2-Current standards and the path toward global standardization. J Nucl Med. 2016;57(7):1148–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic H. Fahey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, K.E., Fahey, F.H. (2019). Radiation Dose Considerations in Pediatric Oncologic Imaging. In: Voss, S., McHugh, K. (eds) Imaging in Pediatric Oncology. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-03777-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03777-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03776-5

  • Online ISBN: 978-3-030-03777-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics