Skip to main content

Design and Analysis of Greenhouse Automated Guided Vehicle

  • Conference paper
  • First Online:
Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 891))

Abstract

In order to realize agricultural automation and large-scale production, a greenhouse automated guided vehicle is designed. It is equipped with a objective table and retractor device, using a track-type transmitting motion. The automatic guided vehicle is imported into the ANSYS through the graphical data conversion. The finite element model of the structure is generated by grid division. The finite element analysis of the structure is carried out. The strength and stiffness characteristics of the structure are calculated in the static analysis. The frequency of the vehicle calculated by modal analysis. The results show that the stiffness and strength meets the requirements of using, and the resonance damage can be avoided by avoiding the natural frequency of the vehicle. The greenhouse automatic guided vehicle can quickly transport materials to designated locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen, R.N., Norremark, M., Sorensen, C.G., Nils, A.A.: Utilising scripting language for unmanned and automated guided vehicles operating within row crops. Sci. Direct 62, 190–203 (2008)

    Google Scholar 

  2. Martínez-Barberá, H., Herrero-Pérez, D.: Autonomous navigation of an automated guided vehicle in industrial environments. Robot. Comput. Integr. Manuf. 26, 296–311 (2010)

    Article  Google Scholar 

  3. Ni, W., Wang, W.L., Zhao, X.H.: Structural design of SCARA handling robot with five degrees of freedom. Equip. Mach. 8, 36 (2017)

    Google Scholar 

  4. José, A.V., Subramanian, P., Abraham, M.: Finding optimal dwell points for automated guided vehicles in general guide-path layouts. Int. J. Prod. Econ. 170, 856–861 (2015)

    Google Scholar 

  5. Bechtsis, D., Tsolakis, N., Vlachos, D.: Sustainable supply chain management in the digitalization era: the impact of automated guided vehicle. J. Clean. Prod. 142, 3970–3984 (2017)

    Article  Google Scholar 

  6. An, F., Chen, Q., Zha, Y.F., Tao, W.Y.: Mobile robot designed with autonomous navigation system. J. Phys. Conf. Ser. 910(1), 162–168 (2017)

    Google Scholar 

Download references

Acknowledgements

This study is sustained by Graduate Technology Innovation Project of Xiamen University of Technology No. 40316076, and Fujian recommended the National College Students’ innovation and entrepreneurship training program No.420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jui Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, XY., Chiu, YJ., Mu, H. (2019). Design and Analysis of Greenhouse Automated Guided Vehicle. In: Krömer, P., Zhang, H., Liang, Y., Pan, JS. (eds) Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2018. Advances in Intelligent Systems and Computing, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-03766-6_29

Download citation

Publish with us

Policies and ethics