Skip to main content

Abstract

In this the chapter the design and implementation of a portable IoT-enabled microcontroller-based PoC device is discussed. The device is able to measure the concentration of CTx-I in serum and transfer the data to an IoT-based cloud server. The last chapter gives a general conclusion of the research work and future prospects of the reported work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsieh K, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT (2015) Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc Chem Res 48(4):911–920

    Article  Google Scholar 

  2. Cook DA, Sorensen KJ, Nishimura RA, Ommen SR, Lloyd FJ (2015) A comprehensive information technology system to support physician learning at the point of care. Acad Med 90(1):33–39

    Article  Google Scholar 

  3. Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253

    Article  Google Scholar 

  4. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104

    Article  Google Scholar 

  5. Yetisen AK, Akram MS, Lowe CR (2013) Based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

    Article  Google Scholar 

  6. Afsarimanesh N, Zia AI, Mukhopadhyay SC, Kruger M, Yu P-L, Kosel J, Kovacs Z (2016) Smart sensing system for the prognostic monitoring of bone health. Sensors 16(7):976

    Article  Google Scholar 

  7. Yun Y-H, Bhattacharya A, Watts NB, Schulz MJ (2009) A label-free electronic biosensor for detection of bone turnover markers. Sensors 9(10):7957–7969

    Article  Google Scholar 

  8. Ramanathan M, Patil M, Epur R, Yun Y, Shanov V, Schulz M, Heineman WR, Datta MK, Kumta PN (2016) Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers. Biosens Bioelectron 77:580–588

    Article  Google Scholar 

  9. Lafleur JP, Jönsson A, Senkbeil S, Kutter JP (2016) Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 76:213–233

    Article  Google Scholar 

  10. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12):30011–30031

    Article  Google Scholar 

  11. Parolo C, de la Escosura-Muniz A, Merkoci A (2015) Electrochemical DNA sensors based on nanoparticles. Electrochemical biosensors, p 195

    Google Scholar 

  12. Uludag Y, Esen E, Kokturk G, Ozer H, Muhammad T, Olcer Z, Basegmez HIO, Simsek S, Barut S, Gok MY (2016) Lab-on-a-chip based biosensor for the real-time detection of aflatoxin. Talanta 160:381–388

    Article  Google Scholar 

  13. Uludag Y, Narter F, Sağlam E, Köktürk G, Gök MY, Akgün M, Barut S, Budak S (2016) An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers. Anal Bioanal Chem 408(27):7775–7783

    Article  Google Scholar 

  14. Wu Y, Xue P, Kang Y, Hui KM (2013) Based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem 85(18):8661–8668

    Article  Google Scholar 

  15. Wu Y, Xue P, Hui KM, Kang Y (2014) A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron 52:180–187

    Article  Google Scholar 

  16. Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183(3):1033–1054

    Article  Google Scholar 

  17. Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64(2):269–277

    Article  Google Scholar 

  18. Alahi MEE, Li X, Mukhopadhyay S, Burkitt L (2017) A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans Ind Electron 64(9):7333–7341

    Article  Google Scholar 

  19. Islam SMR, Kwak D, Kabir MH, Hossain M, Kwak KS (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708. https://doi.org/10.1109/ACCESS.2015.2437951

    Article  Google Scholar 

  20. Thingspeak (2017) Thingspeak. https://thingspeak.com/. Accessed 26/08/2017

  21. Website A (2017) Ciao. https://www.arduino.cc/en/Reference/Ciao. Accessed 26/08/2017

  22. Arduino (2017) Arduino Uno WiFi. https://store.arduino.cc/usa/arduino-uno-wifi. Accessed 4/09/2017

  23. Devices A (2017) AD5933. Impedance analyzer. Analog devices. http://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf. Accessed 04/09/2017

  24. Devices A (2017) ADG849. http://www.analog.com/media/en/technical-documentation/data-sheets/ADG849.pdf. Accessed 08/09/2017

  25. Device A (2017) Direct digital synthesis. http://www.analog.com/media/en/analog-dialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis.pdf. Accessed 08/09/2017

  26. Mankar J, Darode C, Trivedi K, Kanoje M, Shahare P (2014) Review of I2C protocol. Int J 2(1)

    Google Scholar 

  27. Arduino (2017) Arduino. https://www.arduino.cc/en/Guide/Environment

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Afsarimanesh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afsarimanesh, N., Mukhopadhyay, S.C., Kruger, M. (2019). IoT-Enabled Microcontroller-Based System. In: Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss. Smart Sensors, Measurement and Instrumentation, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-03706-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03706-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03705-5

  • Online ISBN: 978-3-030-03706-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics