Skip to main content

Planar Interdigital Sensors and Electrochemical Impedance Spectroscopy

  • Chapter
  • First Online:
Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss

Abstract

In this chapter, the operating principle of a planar interdigital sensor is explained and a basic theory of Electrochemical Impedance Spectroscopy (EIS) is discussed. An experimental setup is introduced which can fetch the information from the test sample and convert it into an electrical signal for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Abed AS, Lindquist RG (2008) Capacitive interdigital sensor with inhomogeneous nematic liquid crystal film. Prog Electromagnet Res B 7:75–87

    Article  Google Scholar 

  2. Mamishev AV, Sundara-Rajan K, Yang F, Du Y, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 92(5):808–845

    Article  Google Scholar 

  3. Chen Y, Zhu C, Cao M, Wang T (2007) Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes. Nanotechnology 18(28):285502

    Article  Google Scholar 

  4. Rahman MSA, Mukhopadhyay SC, Yu P-L (2014) Novel planar interdigital sensors. In: Novel sensors for food inspection: modelling, fabrication and experimentation. Springer, Berlin, pp 11–35

    Google Scholar 

  5. Syaifudin AM, Jayasundera K, Mukhopadhyay S (2009) A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens Actuators B Chem 137(1):67–75

    Article  Google Scholar 

  6. Syaifudin AM, Mukhopadhyay S, Yu P (2009) Electromagnetic field computation using COMSOL multiphysics to evaluate the performance of novel interdigital sensors. In: Applied electromagnetics conference (AEMC), 2009, IEEE, pp 1–4

    Google Scholar 

  7. Yunus M, Mukhopadhyay S, Jayasundera K (2009) A novel planar interdigital sensor for environmental monitoring. In: Sensors, 2009 IEEE, pp 105–110

    Google Scholar 

  8. Arwin H (2011) Application of ellipsometry techniques to biological materials. Thin Solid Films 519(9):2589–2592

    Article  Google Scholar 

  9. Yang Y, Chiesura G, Luyckx G, Vervust T, Bossuyt F, Vanfleteren J, Degrieck J (2014) In situ on-line cure monitoring of composites by embedded interdigital sensor. In: 16th European conference on composite materials (ECCM-16), 2014. Universidad de Sevilla, School of Engineering

    Google Scholar 

  10. Zia AI, Syaifudin AM, Mukhopadhyay S, Yu P, Al-Bahadly I, Gooneratne CP, Kosel J, Liao T-S (2013) Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. In: Journal of physics: conference series, vol 1. IOP Publishing, p 012026

    Google Scholar 

  11. Zia AI, Mukhopadhyay SC, Yu P-L, Al-Bahadly I, Gooneratne CP, Kosel J (2015) Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 67:342–349

    Article  Google Scholar 

  12. Zia A, Mukhopadhyay S, Al-Bahadly I, Yu P, Gooneratne CP, Kosel J (2014) Introducing molecular selectivity in rapid impedimetric sensing of phthalates. In: 2014 IEEE international instrumentation and measurement technology conference (I2MTC) proceedings, pp 838–843

    Google Scholar 

  13. Syaifudin A, Jayasundera K, Mukhopadhyay S (2009) A novel planar interdigital sensor based sensing and instrumentation for detection of dangerous contaminated chemical in seafood. In: Instrumentation and measurement technology conference, 2009, I2MTC’09, IEEE 2009, pp 701–706

    Google Scholar 

  14. Fischer J, Dejmkova H, Barek J (2011) Electrochemistry of pesticides and its analytical applications. Curr Org Chem 15(17):2923–2935

    Article  Google Scholar 

  15. Khafaji M, Shahrokhian S, Ghalkhani M (2011) Electrochemistry of levo-thyroxin on edge-plane pyrolytic graphite electrode: application to sensitive analytical determinations. Electroanalysis 23(8):1875–1880

    Article  Google Scholar 

  16. Li L, Yang F, Yu J, Wang X, Zhang L, Chen Y, Yang H (2012) In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater Res Bull 47(12):3971–3975

    Article  Google Scholar 

  17. Dhull M, Arora A (2015) Design of MEMS based microheater for enhanced efficiency of gas sensors. J Therm Eng Appl 2(2):16–21

    Google Scholar 

  18. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  19. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555

    Article  Google Scholar 

  20. Ribeiro D, Abrantes J (2016) Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr Build Mater 111:98–104

    Article  Google Scholar 

  21. Afsarimanesh N, Zia AI, Mukhopadhyay SC, Kruger M, Yu P-L, Kosel J, Kovacs Z (2016) Smart sensing system for the prognostic monitoring of bone health. Sensors 16(7):976

    Article  Google Scholar 

  22. Abdul Rahman MS, Mukhopadhyay SC, Yu P-L, Goicoechea J, Matias IR, Gooneratne CP, Kosel J (2013) Detection of bacterial endotoxin in food: new planar interdigital sensors based approach. J Food Eng 114(3):346–360

    Article  Google Scholar 

  23. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81(10):3944–3949

    Article  Google Scholar 

  24. Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3:207–229

    Article  Google Scholar 

  25. Fernández-Sánchez C, McNeil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. TrAC Trends Anal Chem 24(1):37–48

    Article  Google Scholar 

  26. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy, vol 48. Wiley, USA

    Google Scholar 

  27. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1:8

    Google Scholar 

  28. LCR METER IM3536. https://www.hioki.com/en/products/detail/?product_key=5824

  29. Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5(5):1098–1115

    Article  Google Scholar 

  30. Alahi MEE, Li X, Mukhopadhyay S, Burkitt L (2017) A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans Ind Electron 64(9):7333–7341

    Article  Google Scholar 

  31. Islam T, Rahman ZU, Mukhopadhyay SC (2015) A novel sol–gel thin-film constant phase sensor for high humidity measurement in the range of 50%–100% RH. IEEE Sens J 15(4):2370–2376

    Article  Google Scholar 

  32. Ramulu T, Venu R, Sinha B, Lim B, Jeon S, Yoon S, Kim C (2013) Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron 40(1):258–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Afsarimanesh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afsarimanesh, N., Mukhopadhyay, S.C., Kruger, M. (2019). Planar Interdigital Sensors and Electrochemical Impedance Spectroscopy. In: Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss. Smart Sensors, Measurement and Instrumentation, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-03706-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03706-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03705-5

  • Online ISBN: 978-3-030-03706-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics