Skip to main content

Tumor-Induced Osteomalacia

  • Chapter
  • First Online:
Book cover Metabolic Bone Diseases
  • 968 Accesses

Abstract

Tumor-induced osteomalacia is an acquired paraneoplastic disease of the bone that occurs due to oversecretion of the phosphaturic hormone FGF23 by a functioning tumor. Clinical features are similar to other causes of osteomalacia such as bone pains, bone deformities, and bone weakness. The underlying causative tumor is usually asymptomatic. Laboratory hallmarks are hypophosphatemia, phosphaturia, and low 1,25 dihydroxy vitamin D. The causative tumor must be located by a combination of physical examination and functional and anatomical imaging tests. Cure is possible and prognosis is favorable when the causative tumor is completely excised. When surgery is not possible or carries significant postoperative morbidity, a variety of pharmacologic agents and tumor-directed therapies can be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

DOTANOC:

1,4,7,10-Tetraazacyclododecane -D-Phe1-1-Nal3-octreotide

DOTATATE:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid octreotate

DOTATOC:

1,4,7,10-Tetraazacyclododecane-N,N,N,N-tetraacetic-acid-D-Phe1 -Tyr3 –octreotide

FDG:

Fluorodeoxyglucose

FGF:

Fibroblast growth factor

HYNIC-TOC:

Hydrazinonicotinyl-Tyr3-Octreotide

MEPE:

Matrix extracellular phosphoglycoprotein

MIBI:

Methoxyisobutylisonitrile

MRI:

Magnetic resonance imaging

NPT:

Sodium-phosphate cotransporter

OOM:

Oncogenic osteomalacia

PET:

Positron emission tomography

PMT:

Phosphaturic mesenchymal tumor

PMTMCT:

Phosphaturic mesenchymal tumor, mixed connective tissue variant

sFRP-4:

Secreted frizzled-related protein 4

SPECT:

Single photon emission computed tomography

TIO:

Tumor-induced osteomalacia

TmP/GFR:

Tubular maximum reabsorption of phosphate corrected for glomerular filtration rate

TRP:

Tubular phosphate reabsorption

References

  1. Abate EG, Bernet V, Cortese C, Garner HW. Tumor induced osteomalacia secondary to anaplastic thyroid carcinoma: a case report and review of the literature. Bone Rep. 2016;5:81–5. https://doi.org/10.1016/j.bonr.2015.11.004.

    Article  Google Scholar 

  2. Agrawal K, Bhadala S, Mittal BR, Shukla J, Sood A, Bhattacharya A, et al. Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in localization of tumor causing oncogenic osteomalacia. Clin Nucl Med. 2015;40(1):e6–e10.

    Article  Google Scholar 

  3. Amblee A, Uy J, Senseng C, Hart P. Tumor-induced osteomalacia with normal systemic fibroblast growth factor-23 level. Clin Kidney J. 2014;7:186–9. https://doi.org/10.1093/ckj/sfu004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andreopoulou P, Dumitrescu CE, Kelly MH, Brillante BA, Cutler Peck CM, Wodajo FM, et al. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res. 2011;26(6):1295–302. https://doi.org/10.1002/jbmr.316.

    Article  PubMed  Google Scholar 

  5. Bansal S, Khazim K, Suri R, Martin D, Werner S, Fanti P. Tumor induced osteomalacia: associated with elevated circulating levels of fibroblast growth factor-7 in addition to fibroblast growth factor-23. Clin Nephrol. 2015; https://doi.org/10.5414/CN108596.

    Article  Google Scholar 

  6. Basu S, Fargose P. 177Lu-DOTATATE PRRT as promising new treatment approach in recurrent skull base phosphaturic mesenchymal tumor causing paraneoplastic oncogenic osteomalacia: a potential therapeutic application of PRRT beyond NET. J Nucl Med Technol. First published online September 15. 2016; https://doi.org/10.2967/jnmt.116.177873.

    Article  Google Scholar 

  7. Berndt TJ, Schiavi S, Kumar R. “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Ren Physiol. 2005;289:F1170–82. https://doi.org/10.1152/ajprenal.00072.2005.

    Article  CAS  Google Scholar 

  8. Carpenter TO, Miller PD, Weber TJ, Peacock M, Ruppe MD, Insogna K, Osei S, Luca D, Skrinar A, San Martin J, Jan de Beur S. Effects of KRN23, an ant-FGF23 antibody on patients with tumor-induced osteomalacia and epidermal nevus syndrome: results from an ongoing phase 2 study. 2016. http://www.ultragenyx.com/file.cfm/22/docs/Carpenter_2016_ASBMR_Oral_TIO_Final.pdf. Accessed 8 Jan 2017.

  9. Chong WH, Andreoupoulou P, Chen CC, Reynolds J, Guthrie L, Kelly M, et al. Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J Bone Miner Res. 2013;28(6):1386–98. https://doi.org/10.1002/jbmr.1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chong WH, Yavuz S, Patel SM, Chen CC, Collins MT. The importance of whole body imaging in tumor-induced osteomalacia. J Clin Endocrinol Metab. 2011;96(12):3599–600. https://doi.org/10.1210/jc.2011-1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drezner MK, Feinglos MN. Osteomalacia due to a 1a,25-dihydroxycholecalciferol deficiency: association with a giant cell tumor of bone. J Clin Invest. 1977;60:1046–53.

    Article  CAS  Google Scholar 

  12. Elderman JH, Wabbijn M, de Jongh F. Hypophosphataemia due to FGF-23 producing B cell non-Hodgkin’s lymphoma. BMJ Case Rep. 2016; https://doi.org/10.1136/bcr-2015-213954.

  13. Ellis MB, Gridley D, Lal S, Nair GR, Feiz-Irfan I. Phosphaturic mesenchymal tumor of the brain without tumor-induced osteomalacia in an 8-year-old girl: case report. J Neurosurg Pediatr. 2016; https://doi.org/10.3171/2015.9.PEDS14617.

    PubMed  Google Scholar 

  14. El-Maouche D, Sadowski SM, Papadakis GZ, Guthrie L, Cottle-Delisie C, Merkel R, et al. 68Ga-DOTATATE for tumor localization in tumor induced osteomalacia. J Clin Endocrinol Metab. 2016;101(10):3575–81. https://doi.org/10.1210/jc.2016-2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukumoto S. Anti-fibroblast growth factor 23 antibody therapy. Curr Opin Nephrol Hypertens. 2014a;23(4):346–51. https://doi.org/10.1097/01.mnh.0000447012.98357.da.

    Article  CAS  PubMed  Google Scholar 

  16. Fukumoto S. Diagnostic modalities for FGF23-producing tumors in patients with tumor-induced osteomalacia. Endocrinol Metab. 2014b;29:136–43. https://doi.org/10.3803/EnM.2014.29.2.136.

    Article  Google Scholar 

  17. Fukumoto S. FGF23: phosphate metabolism and beyond. IBMS BoneKey. 2010;7(8):268–78. https://doi.org/10.1138/20100458.

    Article  Google Scholar 

  18. Gandhi GY, Shah AA, Wu KJ, Gupta V, Shoraka AR. Tumor-induced osteomalacia caused by primary fibroblast growth factor 23 secreting neoplasm in axial skeleton: a case report. Case Rep Endocrinol. 2012; https://doi.org/10.1155/2012/185454.

    Article  Google Scholar 

  19. Geller JL, Khosravi A, Kelly MH, Riminucci M, Adams JS, Collins MT. Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res. 2007;22(6):931–7. https://doi.org/10.1359/JBMR.070304.

    Article  CAS  PubMed  Google Scholar 

  20. Haeusler G, Freilinger M, Dominkus M, Egerbacher M, Amann G, Kolb A, et al. Tumor-induced hypophosphatemic rickets in an adolescent boy—clinical presentation, diagnosis, and histological findings in growth plate and muscle tissue. J Clin Endocrinol Metab. 2010;95(10):4511–7. https://doi.org/10.1210/jc.2010-0543.

    Article  CAS  PubMed  Google Scholar 

  21. Halperin F, Anderson RJ, Mulder JE. Tumor-induced osteomalacia: the importance of measuring serum phosphorus levels. Nat Clin Pract Endocrinol Metab. 2007;3(10):721–5. https://doi.org/10.1038/ncpendmet0639.

    Article  CAS  PubMed  Google Scholar 

  22. Hesse E, Moessinger E, Rosenthal H, Laenger F, Brabant G, Thorsten P, et al. Oncogenic osteomalacia: exact tumor localization by co-registration of positron emission and computed tomography. J Bone Miner Res. 2006;22(1):158–62. https://doi.org/10.1359/JBMR.060909.

    Article  CAS  Google Scholar 

  23. Higley M, Beckett B, Schmahmann S, Dacey E, Foss E. Locally aggressive and multifocal phosphaturic mesenchymal tumors: two unusual cases of tumor-induced osteomalacia. Skelet Radiol. 2015; https://doi.org/10.1007/s00256-015-2246-x.

    Article  Google Scholar 

  24. Ho CL. Ga68-DOTA peptide PET/CT to detect occult mesenchymal tumor-inducing osteomalacia: a case series of three patients. Nucl Med Mol Imaging. 2015;49:231–6. https://doi.org/10.1007/s13139-015-0328-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu F, Jiang C, Zhang Q, Shi H, Wei L, Wang Y, et al. Quantitative ELISA-like immunohistochemistry of fibroblast growth factor 23 in diagnosis of tumor-induced osteomalacia and clinical characteristics of the disease. Dis Markers. 2016:3176978. https://doi.org/10.1155/2016/3176978.

    Article  Google Scholar 

  26. Jagtap VS, Sarathi V, Lila AR, Malhotra G, Sankhe SS, Bandgar T, et al. Tumor-induced osteomalacia: a single center experience. Endocr Pract. 2011;17(2):177–84.

    Article  Google Scholar 

  27. Jain AS, Shelley S, Muthukrishnan I, Kalal S, Amalachandran J, Chandran S. Diagnostic importance of contrast enhanced F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: our experience. Indian J Nucl Med. 2016;31(1):14–9. https://doi.org/10.4103/0972-3919.172344.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang Y, Xia W, Xing X, Silva BC, Li M, Wang O, et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res. 2012;27(9):1967–75.

    Article  Google Scholar 

  29. Jing H, Li F, Zhong D, Zhuang H. 99mTc-HYNIC-TOC (99mTc-Hydrazinonicotinyl-Tyr3-Octreotide) scintigraphy identifying two separate causative tumors in a patient with tumor-induced osteomalacia (TIO). Clin Nucl Med. 2013;38(8):664–7. https://doi.org/10.1097/RLU.0b013e3182996293.

    Article  PubMed  Google Scholar 

  30. John M, Shah NS. Hypophosphatemic rickets with epidermal nevus syndrome. Indian Pediatr. 2005;42:611–2.

    PubMed  Google Scholar 

  31. Juppner H, Wolf M, Salusky IB. FGF23: more than a regulator of renal phosphate handling? J Bone Miner Res. 2010;25(10):2019–7. https://doi.org/10.1002/jbmr.170.

    Article  CAS  Google Scholar 

  32. Kaneuchi Y, Hakozaki M, Yamada H, Hasegawa O, Tajino T, Konno S. Missed causative tumors in diagnosing tumor induced osteomalacia with 18F-FDG PET/CT: a potential pitfall of standard-field imaging. Hell J Nucl Med. 2016;19(1):46–8.

    PubMed  Google Scholar 

  33. Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, Wodajo FM, Fedarko NS, Collins MT. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–7. https://doi.org/10.1210/jc.2006-2865.

    Article  CAS  PubMed  Google Scholar 

  34. Kishida ES, Silva MAM, Pereira DC, Sanches JA, Sotto MN. Epidermal nevus syndrome associated with adnexal tumors, Spitz nevus, and hypophosphatemic vitamin D-resistant rickets. Pediatr Dermatol. 2005;22(1):48–54.

    Article  Google Scholar 

  35. Lin H, Shih S, Tseng Y, Chen C, Chiu W, Hsu C, et al. Ovarian cancer-related hypophosphatemic osteomalacia—a case report. J Clin Endocrinol Metab. 2014;99(12):4403–7. https://doi.org/10.1210/jc.2014-2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lyles KW, Berry WR, Haussler M, Harrelson JM, Drezner MK. Hypoposphatemic osteomalacia: association with prostatic carcinoma. Ann Intern Med. 1980;93(2):275–8.

    Article  CAS  Google Scholar 

  37. Michaut P, Prie D, Amiel C, Friedlander G. Dipyridamole for renal phosphate leak? N Engl J Med. 1994;331(1):58–9.

    Article  CAS  Google Scholar 

  38. Payne RB. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998;35:201–6. [PubMed: 9547891].

    Article  CAS  Google Scholar 

  39. Piemonte S, Romagnoli E, Cipriani C, De Lucia F, Pilotto R, Diacinti D, et al. Six-year follow-up of a characteristic osteolytic lesion in a patient with tumor-induced osteomalacia. Eur J Endocrinol. 2014;170(1):K1–4. https://doi.org/10.1530/EJE-13-0581.

    Article  CAS  PubMed  Google Scholar 

  40. Ratanasuwan T, Chetsurakarn S, Ongphiphadhanakul B, Damrongkitchaiporn S. A case report of tumor-induced osteomalacia: eight year followed-up. J Med Assoc Thail. 2008;91(12):1900–3.

    Google Scholar 

  41. Rowe PSN, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone. 2004;34(2):303–19. https://doi.org/10.1016/j.bone.2003.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sahoo J, Balachandran K, Kamalanathan S, Das KA, Patro DK, Halanaik D, et al. Tumor(s) induced osteomalacia—a curious case of double trouble. J Clin Endocrinol Metab. 2014;99(2):395–8. https://doi.org/10.1210/jc.2013-3791.

    Article  PubMed  Google Scholar 

  43. Sandoval MAS, Palermo MA, Carrillo R, Bundoc R, Carnate JM, Galsim R. Successful treatment of tumour-induced osteomalacia after resection of an oral peripheral ossifying fibroma. BMJ Case Rep. 2017; https://doi.org/10.1136/bcr-2016-218637.

  44. Sauder A, Wiernek S, Dai X, Pereira R, Yudd M, Patel C, et al. FGF23-associated tumor-induced osteomalacia in a patient with small cell carcinoma: a case report and regulatory mechanism study. Int J Surg Pathol. 2015; https://doi.org/10.1177/1066896915617828.

    Article  Google Scholar 

  45. Seufert J, Ebert K, Muller J, Eulert J, Hendrich C, Werner E, et al. Octreotide therapy for tumor-induced osteomalacia. N Engl J Med. 2001;345(26):1883–8.

    Article  CAS  Google Scholar 

  46. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci. 2001;98(11):6500–5. https://doi.org/10.1073/ypnas.101545198.

    Article  CAS  PubMed  Google Scholar 

  47. Sood A, Agarwal K, Shukla J, Goel R, Dhir V, Bhattacharya A, et al. Bone scintigraphic patterns in patients of tumor induced osteomalacia. Indian J Nucl Med. 2013;28(3):173–5. https://doi.org/10.4103/0972-3919.119541.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tutton S, Olson E, King D, Shaker JL. Successful treatment of tumor-induced osteomalacia with CT-guided percutaneous ethanol and cryoablation. J Clin Endocrinol Metab. 2012;97(10):3421–5. https://doi.org/10.1210/jc.2012-1719.

    Article  CAS  PubMed  Google Scholar 

  49. Van der Rest C, Cavalier E, Kaux J-F, Krzesinski J-M, Hustinx R, Reginster J-Y, et al. Tumor-induced osteomalacia: the tumor may stay hidden! Clin Biochem. 2011;44:1264–6. https://doi.org/10.1016/j.clinbiochem.2011.07.013.

    Article  PubMed  Google Scholar 

  50. Wang H, Zhong D, Liu Y, Jiang Y, Qiu G, Weng X, et al. 2012Surgical treatments of tumor-induced osteomalacia lesions in long bones: seventeen cases with more than one year of follow-up. J Bone Joint Surg Am. 2015;97:1084–94. https://doi.org/10.2106/JBJS.N.01299.

    Article  PubMed  Google Scholar 

  51. Wang X, Mu Y. Emphasis should be placed on the diagnosis and therapy of tumor induced osteomalacia. Chin Med J. 2011;124(2):163–5. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.02.001.

    Article  PubMed  Google Scholar 

  52. Wasserman JK, Purgina B, Lai CK, Gravel D, Mahaffey A, Bell D, et al. Phosphaturic mesenchymal tumor involving the head and neck: a report of five cases with FGFR1 fluorescence in situ hybridization analysis. Head Neck Pathol. 2016; https://doi.org/10.1007/s12105-015-0678-1.

    Article  Google Scholar 

  53. Weidner N, Santa Cruz D. Phosphaturic mesenchymal tumors: a polymorphous group causing osteomalacia or rickets. Cancer. 1987;59(8):1442–54.

    Article  CAS  Google Scholar 

  54. Yavropoulou MP, Gerothanasi N, Frydas A, Triantafyllou E, Poulios C, Hytiroglou P, et al. Tumor-induced osteomalacia due to a recurrent mesenchymal tumor overexpressing several growth factor receptors. Endocrinol Diab Metab Case Rep. 2015; https://doi.org/10.1530/EDM-15-0025.

  55. Yu W, He J, Fu W, Wang C, Zhang Z. Reports of 17 Chinese patients with tumor-induced osteomalacia. J Bone Miner Metab. 2009; https://doi.org/10.1007/s00774-016-0756-9.

    Article  Google Scholar 

  56. Zhang X, Yu Z, Tonghua L, Yao B, Zhaohuan L. Mesenchymoma associated with vitamin D-resistant hypophosphatemic osteomalacia: case report and review of literature. Chin Med J. 1980;93(6):391–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Anthony Sandoval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandoval, M.A. (2019). Tumor-Induced Osteomalacia. In: Camacho, P. (eds) Metabolic Bone Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-03694-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03694-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03693-5

  • Online ISBN: 978-3-030-03694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics