Skip to main content

Osteogenesis Imperfecta

  • Chapter
  • First Online:
Metabolic Bone Diseases
  • 1026 Accesses

Abstract

Osteogenesis imperfecta is a rare inherited disorder that is the most common cause of osteoporosis in children. There are many types or categories of osteogenesis imperfecta, and each of these types has a distinct pattern of inheritance, genes or proteins involved, and differences in clinical manifestations. Mutations in the two genes coding for type I collagen are largely responsible for majority of cases of osteoporosis imperfecta. We present a clinical case of an adult patient with osteogenesis imperfecta and will subsequently discuss osteogenesis imperfecta classification, clinical manifestations, and treatment for metabolic bone abnormalities related to this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoll C, Dott B, Roth M-P, Alembik Y. Birth prevalence rates of skeletal dysplasias. Clin Genet. 2008;35(2):88–92. https://doi.org/10.1111/j.1399-0004.1989.tb02912.x.

    Article  Google Scholar 

  2. Tournis S, Dede AD. Osteogenesis imperfecta – a clinical update. Metabolism. 2017; https://doi.org/10.1016/j.metabol.2017.06.001.

    Article  CAS  Google Scholar 

  3. Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin N Am. 2014;61(6):1243–57. https://doi.org/10.1016/j.pcl.2014.08.010.

    Article  Google Scholar 

  4. Marini JC. Osteogenesis imperfecta. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Ames: Wiley; 2013. p. 822–9. https://doi.org/10.1002/9781118453926.ch99.

    Chapter  Google Scholar 

  5. Palomo T, Vilaça T, Lazaretti-Castro M. Osteogenesis imperfecta. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):381–8. https://doi.org/10.1097/MED.0000000000000367.

    Article  CAS  PubMed  Google Scholar 

  6. Rauch F, Moffatt P, Cheung M, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.−14C>T mutation in all patients. J Med Genet. 2013;50(1):21–4. https://doi.org/10.1136/jmedgenet-2012-101307.

    Article  CAS  PubMed  Google Scholar 

  7. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res. 2002;17(1):30–8. https://doi.org/10.1359/jbmr.2002.17.1.30.

    Article  PubMed  Google Scholar 

  8. Ward LM, Rauch F, Travers R, et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 2002;31(1):12–8. http://www.ncbi.nlm.nih.gov/pubmed/12110406. Accessed 1 July 2018

    Article  CAS  Google Scholar 

  9. Pyott SM, Schwarze U, Christiansen HE, et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Genet. 2011;20(8):1595–609. https://doi.org/10.1093/hmg/ddr037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Dijk FS, Nesbitt IM, Zwikstra EH, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009;85(4):521–7. https://doi.org/10.1016/j.ajhg.2009.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christiansen HE, Schwarze U, Pyott SM, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(3):389–98. https://doi.org/10.1016/j.ajhg.2010.01.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alanay Y, Avaygan H, Camacho N, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551–9. https://doi.org/10.1016/j.ajhg.2010.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McPherson E, Clemens M. Bruck syndrome (osteogenesis imperfecta with congenital joint contractures): review and report on the first North American case. Am J Med Genet. 1997;70(1):28–31. http://www.ncbi.nlm.nih.gov/pubmed/9129737. Accessed 5 July 2018

    Article  CAS  Google Scholar 

  14. Barnes AM, Duncan G, Weis M, et al. Kuskokwim syndrome, a recessive congenital contracture disorder, extends the phenotype of FKBP10 mutations. Hum Mutat. 2013;34(9):1279–88. https://doi.org/10.1002/humu.22362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71. https://doi.org/10.1016/S0140-6736(15)00728-X.

    Article  CAS  PubMed  Google Scholar 

  16. O’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(2):189–96. http://www.ncbi.nlm.nih.gov/pubmed/10052375. Accessed 1 July 2018

    Article  Google Scholar 

  17. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–9. https://doi.org/10.1016/S8756-3282(00)00269-6.

    Article  CAS  PubMed  Google Scholar 

  18. Arponen H, Mäkitie O, Waltimo-Sirén J. Association between joint hypermobility, scoliosis, and cranial base anomalies in paediatric Osteogenesis imperfecta patients: a retrospective cross-sectional study. BMC Musculoskelet Disord. 2014;15(1):428. https://doi.org/10.1186/1471-2474-15-428.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chines A, Petersen DJ, Schranck FW, Whyte MP. Hypercalciuria in children severely affected with osteogenesis imperfecta. J Pediatr. 1991;119(1 Pt 1):51–7. http://www.ncbi.nlm.nih.gov/pubmed/2066859. Accessed 2 July 2018

    Article  CAS  Google Scholar 

  20. Chines A, Boniface A, McAlister W, Whyte M. Hypercalciuria in osteogenesis imperfecta: a follow-up study to assess renal effects. Bone. 1995;16(3):333–9. http://www.ncbi.nlm.nih.gov/pubmed/7786636. Accessed 2 July 2018

    Article  CAS  Google Scholar 

  21. Radunovic Z, Steine K. Prevalence of cardiovascular disease and cardiac symptoms: left and right ventricular function in adults with osteogenesis imperfecta. Can J Cardiol. 2015;31(11):1386–92. https://doi.org/10.1016/j.cjca.2015.04.016.

    Article  PubMed  Google Scholar 

  22. Lamanna A, Fayers T, Clarke S, Parsonage W. Valvular and aortic diseases in osteogenesis imperfecta. Heart Lung Circ. 2013;22(10):801–10. https://doi.org/10.1016/j.hlc.2013.05.640.

    Article  PubMed  Google Scholar 

  23. Ashournia H, Johansen FT, Folkestad L, Diederichsen ACP, Brixen K. Heart disease in patients with osteogenesis imperfecta — a systematic review. Int J Cardiol. 2015;196:149–57. https://doi.org/10.1016/j.ijcard.2015.06.001.

    Article  PubMed  Google Scholar 

  24. Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96(10):3193–8. https://doi.org/10.1210/jc.2011-1480.

    Article  CAS  PubMed  Google Scholar 

  25. Edouard T, Glorieux FH, Rauch F. Relationship between vitamin D status and bone mineralization, mass, and metabolism in children with osteogenesis imperfecta: histomorphometric study. J Bone Miner Res. 2011;26(9):2245–51. https://doi.org/10.1002/jbmr.413.

    Article  CAS  PubMed  Google Scholar 

  26. Plante L, Veilleux L-N, Glorieux FH, Weiler H, Rauch F. Effect of high-dose vitamin D supplementation on bone density in youth with osteogenesis imperfecta: a randomized controlled trial. Bone. 2016;86:36–42. https://doi.org/10.1016/j.bone.2016.02.013.

    Article  CAS  PubMed  Google Scholar 

  27. Nutrition – Osteogenesis Imperfecta Foundation | OIF.org. http://www.oif.org/site/PageServer?pagename=Nutrition. Accessed 2 July 2018.

  28. Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79. https://doi.org/10.1007/s00198-016-3515-9.

    Article  CAS  PubMed  Google Scholar 

  29. Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. In: Basel D, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2014. p. CD005088. https://doi.org/10.1002/14651858.CD005088.pub3.

    Chapter  Google Scholar 

  30. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8. http://www.ncbi.nlm.nih.gov/pubmed/22947550. Accessed 2 July 2018

    CAS  PubMed  Google Scholar 

  31. Hoyer-Kuhn H, Stark C, Franklin J, Schoenau E, Semler O. Correlation of bone mineral density on quality of life in patients with osteogenesis imperfecta during treatment with denosumab. Pediatr Endocrinol Rev. 2017;15(Suppl 1):123–9. https://doi.org/10.17458/per.vol15.2017.hsf.correlationbonemineraldensity.

    Article  PubMed  Google Scholar 

  32. Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. https://doi.org/10.1186/s13023-014-0145-1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uehara M, Nakamura Y, Takahashi J, et al. Efficacy of denosumab for osteoporosis in three female patients with osteogenesis imperfecta. Tohoku J Exp Med. 2017;242(2):115–20. https://doi.org/10.1620/tjem.242.115.

    Article  PubMed  Google Scholar 

  34. Gatti D, Rossini M, Viapiana O, et al. Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int. 2013;93(5):448–52. https://doi.org/10.1007/s00223-013-9770-2.

    Article  CAS  PubMed  Google Scholar 

  35. Leali PT, Balsano M, Maestretti G, et al. Efficacy of teriparatide vs neridronate in adults with osteogenesis imperfecta type I: a prospective randomized international clinical study. Clin Cases Miner Bone Metab. 2017;14(2):153–6. https://doi.org/10.11138/ccmbm/2017.14.1.153.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Orwoll ES, Shapiro J, Veith S, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8. https://doi.org/10.1172/JCI71101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Glorieux FH, Devogelaer J-P, Durigova M, et al. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017;32(7):1496–504. https://doi.org/10.1002/jbmr.3143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, R., Camacho, P.M. (2019). Osteogenesis Imperfecta. In: Camacho, P. (eds) Metabolic Bone Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-03694-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03694-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03693-5

  • Online ISBN: 978-3-030-03694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics