Skip to main content

Negotiated Materialization: Design Approaches Integrating Wood Heterogeneity Through Advanced Robotic Fabrication

  • Chapter
  • First Online:
Digital Wood Design

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 24))

Abstract

Whilst robots are predictable, repetitive, predefined and constant, natural materials present unpredictable complexity. Over the past few centuries, materials have been standardized to fit industrial processes, in an attempt to defy this unpredictability. Thanks to new advances in sensing technologies and computational design, today we have the opportunity to reintegrate the intrinsic properties of natural materials in their full complexity. What is the potential of a synthesis between the particularity of each specific material element—specific properties and parameters—informing the fabrication process? Digital and Robotic Fabrication are based on the use of flexible machines that open the possibility to mass-customize the production process. Combined with sensors and computational analysis, they allow to work with “soft systems”, both adaptable and continuously evolving, whose dynamism is constantly fed by a flow of information. How can the designer integrate this uncertainty and complexity in the design process? In this paper the authors specifically discuss the management of structural and material tolerance inherent to large scale construction and anisotropic materials, such as wood. A series of projects developed and built at the Institute for Advanced Architecture of Catalonia and the Bartlett School of Architecture are used as case studies to investigate tolerance management in Digital Fabrication with different kinds of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://iaac.net/educational-programmes/postgraduate-open-thesis-fabrication/past-editions/fusta-robotica-otf-2015/.

  2. 2.

    https://iaac.net/educational-programmes/postgraduate-open-thesis-fabrication/past-editions/digital-urban-orchard/.

  3. 3.

    http://www.iaacblog.com/programs/digital-woodcraft/.

References

  • Alemany M, Portel J (2014) Soft tolerance: an approach for additive construction on site. AD Archit Des J (214):122–127

    Google Scholar 

  • Brugnaro G, Hanna S (2017) Adaptive robotic training methods for subtractive manufacturing. In: ACADIA 2017: disciplines & disruption, proceedings of the 37th annual conference of the association for computer aided design in architecture (ACADIA). Cambridge, MA 2–4 Nov 2017, pp 164–169

    Google Scholar 

  • Brugnaro G, Baharlou E, Vasey L, Menges A (2016) Robotic softness: an adaptive robotic fabrication process for woven structures. In: “ACADIA//2016: Posthuman frontiers: data, designers, and cognitive machines, proceedings of the 36th annual conference of the association for computer aided design in architecture (ACADIA), pp 154–163

    Google Scholar 

  • Capek K, Novak-Jones C, Klima I (2004) R.U.R. Penguin Classics

    Google Scholar 

  • Carpo M (2014) Mario Carpo in conversation with Matthias Kohler. In: Gramazio F, Kohler M, Langenberg S (eds) Fabricate: negotiating design & making. Gta-Verl, Zurich, pp 12–21

    Google Scholar 

  • Dörfler K, Sandy T, Giftthaler M, Gramazio F, Kohler M, Buchli J (2016) Mobile robotic brickwork. In: Reinhardt D, Saunders P, Burry J (eds) Robotic fabrication in architecture, art and design 2016. Springer International Publishing, pp 205–218

    Google Scholar 

  • Dubor A, Diaz GB (2013) Magnetic Architecture. In: Brell-Çokcan S, Braumann J (eds) Rob|Arch 2012. Springer, Vienna

    Google Scholar 

  • Dubor A, Camprodom G, Bello Diaz G, Reinhardt D, Saunders R, Dunn K, Niemelä M, Horlyck S, Alarcon-Licona S, Wozniak-O’Connor D, Watt R (2016) Sensors and workflow evolutions: developing a framework for instant robotic toolpath revision. In: Reinhardt D, Saunders P, Burry J (eds) Robotic fabrication in architecture, art and design 2016. Springer International Publishing, pp 411–426

    Google Scholar 

  • Figliola A (2017) Post-industrial robotics: esplorazione di architetture informate nell’era post-digitale. Techne. https://doi.org/10.13128/techne-xxxxx

  • Figliola A, Dubor A (2017) Fusta Robòtica: generic tools for complex structure through the performances. In: Favargiotti S, Staniscia S (eds) Monograph.Research REDS 03. Flowing Knowledge, Monograph.Research 03. List, Trento, pp 228–232

    Google Scholar 

  • Fure A (2011) Digital materiallurgy: on the productive force of deep codes and vital matter. In: ACADIA 11: integration through computation, proceedings of the 31st annual conference of the association for computer aided design in architecture (ACADIA), Banff (Alberta), pp 90–97

    Google Scholar 

  • Gramazio F, Kohler M (2014) Made by robots: challenging architecture at a larger scale. Wiley, London

    Google Scholar 

  • Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley Pub. Co, Reading, Mass

    Google Scholar 

  • Jeffers M (2016) Autonomous robotic assembly with variable material properties. In: Reinhardt D, Saunders P, Burry J (eds) Robotic fabrication in architecture, art and design 2016. Springer International Publishing, pp 49–62

    Google Scholar 

  • Keller CM, Keller JD (1993) Thinking and acting with iron. In: Chaiklin S, Lave J (eds) Understanding practice: perspectives on activity and context. Cambridge University Press, Cambridge

    Google Scholar 

  • Kolarevic B, Klinger K (2008) Manufacturing material effects: rethinking design and making in architecture. Routledge, New York

    Google Scholar 

  • Kwinter S (1993) Soft system. In: Culture lab. Princenton Architectural Press, pp 206–227

    Google Scholar 

  • Menges A (2015a) Material synthesis: fusing the physical and the computational. Architectural Design Profile, Wiley, London

    Google Scholar 

  • Menges A (2015b) The new cyber-physical making in architecture. In: AD Archit Des J (237):40–47

    Google Scholar 

  • Pye D (1978) The nature and art of workmanship. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwartz T, Andraos S, Nelson J, Knapp C, Arnold B (2016) Towards on-site collaborative robotics. In: Reinhardt D, Saunders P, Burry J (eds) Robotic fabrication in architecture, art and design 2016. Springer International Publishing, pp 388–398

    Google Scholar 

  • Sharif S, Gentry R (2015) Design cognition shift from craftsman to digital maker. In: Emerging experience in past, present and future of digital architecture, proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015). pp 683–692

    Google Scholar 

  • Vasey L, Baharlou E, Dörstelmann M, Koslowski V, Prado M, Schieber G, Menges A, Knippers J (2015) Behavioral design and adaptive robotic fabrication of a fiber composite compression shell with pneumatic formwork. In: Combs L, Perry C (eds) Computational ecologies: design in the anthropocene, proceedings of the 35th annual conference of the association for computer aided design in architecture (ACADIA). University of Cincinnati, Cincinnati OH, pp 297–309

    Google Scholar 

  • Wu K, Kilian A (2016) Developing architectural geometry through robotic assembly and material sensing. In: Reinhardt D, Saunders P, Burry J (eds) Robotic fabrication in architecture, art and design 2016. Springer International Publishing, pp 241–251

    Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Mathilde Marengo for input.

Fusta Robòtica Pavilion is a research project of IAAC realized as part of the Open Thesis Fabrication 2015 developed with the generous sponsorship of Serradora Boix; in collaboration with Gremi de Fusters, Tallfusta, Incafust, Mecakim, Decustik.

Digital Urban Orchard is a project of IAAC, realized as part of the Open Thesis Fabrication 2015, developed with the generous sponsorship of Merefsa, and the collaboration of Windmill and Scanarq.

Both projects were led by Areti Markopoulou, Alexandre Dubor, Silvia Brandi; assisted by Djordje Stanojevic; and developed by students: Andrea Quartara, Angelo Figliola, Monish Siripurapu, Ji Won Jun, Josep Alcover Llubia, Yanna Haddad, Mohamad Mahdi Najafi, Fathimah Sujna Shakir and Nada Shalaby.

Robotic Sawmill is a project of IAAC, realized as a workshop within the Master of Advanced Architecture 2012–13, led by Tom Pawlofsky, assisted by Alexandre Dubor, and developed by students: Alexander Dolan, Kartik Ashok Gala, Robert Francisco Garita Garita, Vincent Huyghe, Stefanos Levidis, Iker Luna, Stuart Maggs, Dirce Medina Patatuchi, Pedro Moraes, Boleslaw Musierowicz, Urte Naujekaite, Amir Reza Saheb, Dori Sadan, Ahmed Selim, Jin Shihui, Anand Singh, Sofoklis Giannakopoulos, Georgios Soutos, Angeliki Terezaki, Ali Yerdel, Maria Kuptsova, Vicente Gasco Gomez, Inder Prakash Singh Shergill.

Digital Woodcraft is a project of IAAC, realized as part of the Master of Advanced Architecture Individual Thesis, in 2016–17, led by Marcos Cruz, with the input of Raimund Krenmueller and developed by student: Nikolaos Argyros.

The “Adaptive Robotic Carving” project is part of ongoing Ph.D. research conducted by Giulio Brugnaro, supervised by Prof. Bob Sheil and Dr. Sean Hanna, at the Bartlett School of Architecture, University College of London, within the framework of the “InnoChain Training Network,” supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 642877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dubor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brugnaro, G., Figliola, A., Dubor, A. (2019). Negotiated Materialization: Design Approaches Integrating Wood Heterogeneity Through Advanced Robotic Fabrication. In: Bianconi, F., Filippucci, M. (eds) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-03676-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03676-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03675-1

  • Online ISBN: 978-3-030-03676-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics