Solid Wood and Wood Based Composites: The Challenge of Sustainability Looking for a Short and Smart Supply Chain

  • M. Romagnoli
  • M. Fragiacomo
  • Antonio Brunori
  • M. Follesa
  • G. Scarascia MugnozzaEmail author
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 24)


The paper takes into account the most important wood based products used in architecture, structural engineering and design. The amount of roundwood, sawnwood and wood panel production is analysed and forest certification is reported as possible tool to ensure a sustainable forest management, fighting illegal logging and deforestation. A smart review of the most used wood-based products is performed together with the chance to activate a modern short supply chain. The state of art of the wood species actually used is considered together with most important actual challenges addressed to obtain sustainable wood-based products referring to eco-friendly process of gluing and increasing durability. The possibility to use short chain species for structural purposes is reported looking to Italian case studies (chestnut, eucalyptus and pines). A lot of successful prototypes and products have been obtained using short supply species, but research still is needed on the most type or products especially if they are to be used for structural purposes.


CLT Panels Gluing Forest certification Forest production 



Grant: MIUR PRIN 2015. Prot. 2015YW8JWA. La filiera corta nel settore biomasse-legno: approvvigionamento, tracciabilità, certificazione e sequestro di Carbonio. Innovazioni per la bioedilizia e l’efficienza energetica (led by Giuseppe Scarascia Mugnozza). The research work was partially supported also by the “Departments of Excellence-2018” Program (Dipartimenti di Eccellenza) of the Italian Ministry of Education, University and Research, DIBAF-Department of University of Tuscia, Project “Landscape 4.0—food, wellbeing and environment” project of excellence MIUR “Landscape 4.0” DIBAF.


  1. Alpar T, Fàczàn T, Ràcz I, Kàtoli G (2010) MDF/HDF production from plantation wood species. Drvna Industrija 61(3):183–191-Google Scholar
  2. Arwinfar F, Hosseinhashemi SK, Latibari AJ, Lashgari A, Ayrilmis N (2016) Mechanical properties and morphology of wood plastic composites produced with thermally treated beech wood. BioResources 11:1Google Scholar
  3. Berti S, Brunetti M, Capone P, Ciapini E, Fedrigo C, Follesa M, Lauriola MP, Lavisci P, Macchioni N, Palanga G, Palanti S, Pizzo B, Terranova M, Vasta S, Vignoli A (2009) Linee guida per l’edilizia in legno in Toscana – Coordinamento Editoriale: Maurizio Follesa e Marco Pio Lauriola, Regione Toscana, Giunta -Regionale, Direzione Generale della Presidenza, 2009 (in Italian) Google Scholar
  4. Brunetti M, Silvestri A, Nocetti M, Burato P, Portoghesi L, Carbone F (2015) Travi lamellari in castagno. Innovazione di prodotto nella filiera del legno per uso strutturale. Sherwood 215:31–35Google Scholar
  5. Cailloce L (2016) Wood material for the future? CNRS News, 08 Aug 2016Google Scholar
  6. Ceccotti A, Follesa M (2006) Seismic behaviour of multi-storey X-lam buildings. In: Proceedings of 426 COST E29 international workshop on earthquake engineering on timber structures, Coimbra, Portugal, pp 81–95Google Scholar
  7. Ceccotti A, Sandhaas C, Okabe M, Yasumura M, Minowa C, Kawai N (2013) SOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated building. Earthquake Eng Struct Dyn 42(13):2003–2021CrossRefGoogle Scholar
  8. Centro Studi Federlegno Arredo Eventi SpA. Rapporto case ed edifici in legno 2015. Assolegno-Federlegno Arredo, MADE Expo, proHolz; 2015Google Scholar
  9. Concu G, De Nicolo B, Fragiacomo M, Trulli N, Valdes M (2016) Grading of maritime pine from Sardinia (Italy) for use in cross laminated timber. In: Construction materials—proceedings of the institutions of civil engineers (in press). Scholar
  10. De Angelis M, Romagnoli M, Viljem V., Poljanšek I, Oven P, Thaler N, Lesar B, Kržišnik D, Humar M (2018) Chemical composition and performance of Italian Stone pine (Pinus pinea L.) wood against fungal decay and water. Ind Crops Prod 117:187–196. Scholar
  11. Dae Park B, Kim YS (2001) Effect of fiber characteristic on medium density fiberboard (MDF) performances. J Korean Wood Sci Technol 29(3):27–35Google Scholar
  12. EN 16351 (2015) Timber structures—cross laminated timber—requirements. CEN; 2015Google Scholar
  13. EN 14080 (2013) Timber structures. Glued laminated timber and glued solid timber. Requirements. CEN; 2013Google Scholar
  14. FAO (2018) State of world forests 2018, RomeGoogle Scholar
  15. Frihart R, Brandon R, Beecher JF, Ibach RE (2017) Adhesives for achieving durable bonds with acetylated wood. Polymers 9:12CrossRefGoogle Scholar
  16. Fragiacomo M, Riu R, Scotti R (2015) Can structural timber foster short procurement chains within Mediterranean forests? A research case in Sardinia. South-East Eur For J 6(1):11 pp.
  17. Fragiacomo M, Menis A, Clemente I, Bochicchio G, Ceccotti A (2013) Fire resistance of cross-laminated timber panels loaded out-of-plane. ASCE J Struct Eng 139(12):11 pp, 04013018. Scholar
  18. Gavric I, Fragiacomo M, Ceccotti A (2015) Cyclic behavior of cross-laminated timber (CLT) wall systems: experimental tests and analytical prediction models. ASCE J Struct Eng 141(11):14 pp, 04015034. Scholar
  19. Goli G, Cremonini C, Negro F, Zanuttini R, Fioravanti M (2014) Physical-mechanical properties and bonding quality of heat treated poplar (I-214 clone) and ceiba plywood. Iforest 8:687–692CrossRefGoogle Scholar
  20. Kallakas H, Martin M, Goljandin D, Poltimae T, Krumme A, Kers J (2016) Mechanical and physical properties of thermally modified wood flour reinforced polypropylene composites. Agron Res 14:994–1003Google Scholar
  21. Karlinasari L, Hermawan D, Maddu A, Sudo Hadi Y (2012) Development of particleboard from tropical fast-grown species for acoustic panel. J Trop For Sci 24(1):64–69Google Scholar
  22. Keplinger T, Frey M, Burgert I (2018) Versatile strategies for the development of wood-based functional materials. In: Proceedings of SPIE—the international society for optical engineering, article 1059313Google Scholar
  23. Hiziroglu S, Bauchongkol P, Fueangvivat V, Soontonbura W, Jarusombuti S (2007) Selected properties of medium density fiberboard (MDF) panels made from bamboo and rice straw. For Prod J 57(6):46–50Google Scholar
  24. Humar M, Kržišnik D, Lesar B, Ugovšek A, Rep G, Šubic C, Thaler N, Ugovšek A, Zupančič K, Žlahtič M (2017) Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung 71:57–64CrossRefGoogle Scholar
  25. INFC. Inventario Nazionale delle Foreste e dei serbatoi forestali di Carbonio. I caratteri quantitativi - MIPAAF Corpo Forestale dello Stato, CRA-MPF, Trento, 2007 (in Italian)Google Scholar
  26. Jiang W, Tomppo L, Pakarin T, Sirvio JA, Liimatainen H, Haapala A (2018) Effect of cellulose nanofibrils on the bond strength of polyvinyl acetate and starch adhesives for wood. BioResources 13(2):2283–2292Google Scholar
  27. Matteucci G, Cammarano M, Dezi S, Mancini M, Scarascia-Mugnozza G, Magnani F (2011) Climate change impacts on forests and forest products in the Mediterranean area. In: Nararra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean-synthesis and the assessment of adaptation measures. Springer, NetherlandsGoogle Scholar
  28. Meyer-Veltrup L, Brischke C, Alfredsen G, Humar M, Flaete PO, Isaksson T, Larsson Brelid P, Westin M, Jermer J (2017) The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Sci Technol 51(3):615–637CrossRefGoogle Scholar
  29. Mittal, Sharma (1992) Studies on lignin-based adhesives for plywood panels. Polym Int 29(1):7–8CrossRefGoogle Scholar
  30. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fiber biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114CrossRefGoogle Scholar
  31. MCPFE (2007) State of Europe’s forests 2007. MCPFE Liaison Unit, WarsawGoogle Scholar
  32. Nasser RA, Al-Mefarrej HA, Abdel-Aal MA, Alshahrani TS (2014) Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings. J Environ Biol. 35(5):961–971Google Scholar
  33. Nishimura T (2015) Chipboard oriented strand board (OSB) and structural composite lumber. In: Wood composites, Woodhead Publishing series in Composites science and engineering, vol 54, pp 103–119CrossRefGoogle Scholar
  34. Okino E, Teixeira D, Del Menezzi C (2007) Post-thermal treatment od oriented strandboard (OSB) made from cypress (Cupressus glauca Lam.). Maderas Ciencia y tecnologia 9(3):199–210Google Scholar
  35. Pizzi A (2016) Natural adhesives binders and matrices for wood and fiber composites. Chemistry and technology. In: Lignocellulosic, fiber and wood handbook renewable materials for today’s environment, pp 277–303CrossRefGoogle Scholar
  36. Romagnoli M, Cavalli D, Pernarella R, Zanuttini R, Togni M (2015a) Physical and mechanical characteristics of poor-quality wood after heat treatment. IForest 8:884–891 (online) (22 May 2015). Scholar
  37. Romagnoli M, Cecchini M, Carbone F, Portoghesi L, Mattioli W, Moroni S, Brunetti M, Nocetti M (2015b) Innovazione di processo e di prodotto nella filiera del legno di castagno per uso strutturale: lamellare e innalzamento delle classi di resistenza meccanica del legno massiccio. PSR Regione Lazio Assessorato Agricoltura Finanziata con Reg. CE N.1698/05 PSR LAZIO 2007/2013 D.G.R. 76 DEL 18/02/2014 Misura 124 – Cooperazione per lo sviluppo di nuovi prodotti, processi e tecnologie, nel settore agricolo, alimentare forestale – PROGETTO N°: 8475921170 – Provvedimento di Concessione R.L. n. 57/124/10Google Scholar
  38. Romagnoli M, Vinciguerra V, Silvestri A (2018) Heat treatment effect on lignin and carbohydrate in Corsican pine earlywood and latewood studied by Py-GC-MS technique. J Wood Chem Technol 38:57–70 (Scopus cit. 0, WOS cit. 0). Scholar
  39. Schickhofer G, Bogensperger T, Moosbrugger T (2010) BSPhandbuch – Holz-Massivbauweise in Brettsperrholz. Technischen Universität Graz, AustriaGoogle Scholar
  40. Schultz P, Militz H, Freeman MH, Goodell B, Darrel N (2008) Development of commercial preservatives, efficacy environmental and health issue. ACS Symposium Series 982Google Scholar
  41. Smith I, Frangi A (2008) Overview of design issues for tall timber buildings. Struct Eng Int 18(2):141–147CrossRefGoogle Scholar
  42. Spear MJ, Edee A, Carus M (2015) Wood polymer composites. In: Ansell M (ed) Wood Composites, Woodhead Publishing series in Composites and Engineering, vol 54, pp 195–240CrossRefGoogle Scholar
  43. Tomasi R, Piazza M (2013) Investigation of seismic performance of multi-storey timber buildings within the framework of the SERIES Project. In: International conference on structure and architecture, Guimaraes [ICSA2013], PortugalGoogle Scholar
  44. Yemele MC, Blanchet P, Cloutier A, Koubaa A (2008) Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. For Prod J 58(11):48–56Google Scholar
  45. Youngquist J (1999) Wood-based composites and panel products. Forest Product LaboratoryGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Romagnoli
    • 1
  • M. Fragiacomo
    • 2
  • Antonio Brunori
    • 3
  • M. Follesa
    • 4
  • G. Scarascia Mugnozza
    • 1
    Email author
  1. 1.Department of Innovation in Biotechnology Agrifood and Forestry (DIBAF)University of TusciaViterboItaly
  2. 2.Department of Civil, Construction-Architecture and Environmental Engineering (DICEAA)University of L’AquilaL’AquilaItaly
  3. 3.PEFCPerugiaItaly
  4. 4.dedaLEGNOFirenzeItaly

Personalised recommendations