Skip to main content

WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture

  • Chapter
  • First Online:
Digital Wood Design

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 24))

Abstract

The contemporary development and digital culture in architecture, from the idea to the realization, lead to a rewriting of the coordinates of the deep relation between model and pre-figuration, especially in the timber structure field. Artificial intelligence opened new potentialities that rewrite the project paths through the evaluation of computational design, with a model set as the place of simulation and experimentation, in order to locate solutions for more and more high requests made by architecture. Wood’s natural intelligence inspires artificial intelligence’s principles, and it is projected as the new frontier of the research, in its possibility of defying optimized solutions also in function of multiples objectives and parameters. Wooden architecture design correlated to a history of tradition, which is established on descriptive geometry, finds today multiple application fields for the research. In this sense, representation supports the knowledge and the innovation, able to continue and express its operative aspect full of culture and, at the same time, its tecné sense, which etymologically it is meant as art and technique. The present chapter shows different ways to apply the contemporary principle of descriptive geometry in digital wood design research, in a multidisciplinary and contaminated learning environment. In all the illustrated cases, the generative design has a central role, in an integration addressed to the need of optimization of architectural form, using Genetic algorithms in order to analyze and to understand the relationship between form, geometry, and construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmohsen S, Massoud P, Elshafei A (2016) Using tensegrity and folding to generate soft responsive architectural skins. In: Proceedings of the 34th eCAADe conference of complexity & simplicity. Oulu, pp 529–536

    Google Scholar 

  • Accolti P (1625) Lo inganno de gl’occhi, prospettiva pratica de Pietro Accolti. Pietro Cecconcelli, Florence

    Google Scholar 

  • Addington M, Schodek DL (2005) Smart materials and new technologies: for the architecture and design professions. Architectural, Oxford

    Google Scholar 

  • Adriaenssens S, Barnes M (2001) Tensegrity spline beam and grid shell structures. Eng Struct 23(1):29–36. https://doi.org/10.1016/S0141-0296(00)00019-5

    Article  Google Scholar 

  • Adriaenssens S, Block P, Veenendaal D, Williams C (2014) Shell structures for architecture: form finding and optimization. Routledge, New York

    Google Scholar 

  • Aish R, Woodbury R (2005) Multi-level interaction in parametric design. In: Smart graphics. Springer, Berlin, Heidelberg, pp 151–162. https://doi.org/10.1007/11536482_13

  • Ames A, Ittelson WH (1952) The Ames demonstrations in perception. Hafner Publishing, New York

    Google Scholar 

  • Anderson DM (2002) Build-to-order and mass customization: the ultimate supply chain management and lean manufacturing strategy for low-cost on-demand production without forecasts or inventory. CIM Press, Cambria

    Google Scholar 

  • Andia A, Spiegelhalter T (eds) (2017) Post-parametric automation in design and construction. Artech House, Boston

    Google Scholar 

  • Arnheim R (1978) Brunelleschi’s Peepshow. Zeitschrift Für Kunstgeschichte 41(1): 57. https://doi.org/10.2307/1481995

  • Arnheim R (1986) New essays on the psychology of art. University of California Press, Berkeley

    Google Scholar 

  • Asl MR, Bergin M, Menter A, Yan W (2014) BIM-based parametric building energy performance multi-objective optimization. In: Fusion—proceedings of the 32nd eCAADe conference. eCAADe, Newcastle, pp 455–464

    Google Scholar 

  • Austern G, Capeluto IG, Grobman YJ (2018) Rationalization methods in computer aided fabrication: a critical review. Automation in Construction 90:281–293. https://doi.org/10.1016/J.AUTCON.2017.12.027

    Article  Google Scholar 

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76. https://doi.org/10.1162/EVCO_a_00009

    Article  Google Scholar 

  • Bar-Cohen Y (ed) (2016) Biomimetics nature-based innovation. CRC Press, Boca Raton

    Google Scholar 

  • Barnekov VG, McMillin CW, Huber HA (1986) Factors influencing laser cutting of wood. For Prod J 1(36):55–58

    Google Scholar 

  • Barthel R (1967) Natural forms-architectural forms. In: Nerdinger W (ed) Frei Otto complete works. Birkhäuser, Basel-Boston-Berlin, Architecture, pp 16–32

    Google Scholar 

  • Baudrillard J (1981) Simulacres et simulation. Galilée, Paris

    Google Scholar 

  • Baverel O, Larsen OP (2011) A review of woven structures with focus on reciprocal systems—Nexorades. Int J Space Struct 26(4):281–288. https://doi.org/10.1260/0266-3511.26.4.281

    Article  Google Scholar 

  • Baverel O, Pugnale A (2014) Reciprocal systems based on planar elements: morphology and design explorations. Nexus Netw J 1(16):179–189

    Google Scholar 

  • Bechert S, Knippers J, Krieg OD, Menges A, Schwinn T, Sonntag D (2016) Textile fabrication techniques for timber shells elastic bending of custom-laminated veneer for segmented shell construction systems. In: Adriaenssens S, Gramazio F, Kohler M, Menges A, Pauly M (eds) Advances in architectural geometry 2016. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, pp 154–170

    Google Scholar 

  • Benros D, Duarte JP (2009) An integrated system for providing mass customized housing. Autom Constr 18(3):310–320. https://doi.org/10.1016/J.AUTCON.2008.09.006

    Article  Google Scholar 

  • Benyus JM (1997) Biomimicry: innovation inspired by nature. Harper Perennial, New York

    Google Scholar 

  • Bergin M, Steinfeld K (2012) Housing agency system (HAS): multi-criteria satisfying and mass-customization of homes. In: ACSA fall conference. OFFSITE, Philadelphia, pp 93–97

    Google Scholar 

  • Bergmann E, Hildebrand S (2015) Form-finding, form-shaping, designing architecture. Mendrisio Academy Press, Mendrisio

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans: Series A, Mathematical, Physical, and Engineering Sciences 367(1893):1445–1486. https://doi.org/10.1098/rsta.2009.0011

    Article  Google Scholar 

  • Bianconi F (2002) Tetraktis. Strumenti, luoghi, materia, rilievo. Digital Point, Perugia

    Google Scholar 

  • Bianconi F (2005) Segni digitali. Morlacchi, Perugia

    Google Scholar 

  • Bianconi F, Filippucci M (2015) The dams of Rio Grande’s basin (Amelia TR). In: Gambardella C (ed) XIII Forum Internazionale Le Vie dei Mercanti. Heritage and technology mind knowledge experience, vol 1. La scuola di Pitagora, Napoli, pp 1864–1875

    Google Scholar 

  • Bianconi F, Filippucci M (2016a) Generative education: thinking by modeling/modeling by thinking. In: EGA. Congreso: XVI Congreso Internacional de Expresión Gráfica Arquitectónica “El arquitecto, de la tradición al siglo XXI”, vol 1. Grupo Enlace Gráfico, pp 747–754

    Google Scholar 

  • Bianconi F, Filippucci M (2016b) The parameterization of complex surfaces for engineering solutions. In: Le ragioni del Disegno/the reasons of drawing, vol 1. Gangemi, pp 125–130

    Google Scholar 

  • Bianconi F, Verducci P, Filippucci M (2006) Architetture dal Giappone: disegno, progetto e tecnica, vol 1. Gangemi, Roma

    Google Scholar 

  • Bianconi F, Filippucci M, Andreani S (2016a) Computational design and built environments. In: 3D printing: breakthroughs in research and practice, vol 1. IGI Global, Hershey (Pennsylvania, USA), pp. 361–395

    Google Scholar 

  • Bianconi F, Filippucci M, Verdecchia C (2016b) Body movement based architecture. In: Visual computing and emerging geometrical design tools, vol 2. IGI Global, Hershey (Pennsylvania, USA), pp 744–770. https://doi.org/10.4018/978-1-5225-0029-2.ch030

  • Bianconi F, Catalucci S, Filippucci M, Marsili R, Moretti M, Rossi G, Speranzini E (2017a) Comparison between two non-contact techniques for art digitalization. J Phys Conf Ser 882. https://doi.org/10.1088/1742-6596/882/1/012005

  • Bianconi F, Filippucci M, Catalucci S (2017b) Line and Points. Critical analysis of evolution of archaeological survey in forty years of experiences in Umbria. DISEGNARECON 10(19): 4–1–E4.20

    Google Scholar 

  • Bianconi F, Filippucci M, Catalucci S (2017c) The identity landscape in the cataloging of scattered assets in the area of Amelia. In: Putting tradition into practice: heritage, place and design. Proceedings of 5th INTBAU international annual event. Springer, pp 984–993

    Google Scholar 

  • Bianconi F, Filippucci M, Buffi A, Calabro’ MP (2017d) The value of image. The design of and data streams from the perception by design. In: Proceedings 2017. International and interdisciplinary conference IMMAGINI? Image and imagination between representation, communication, education and psychology. MDPI. https://doi.org/10.3390/proceedings1090933

  • Bianconi F, Filippucci M, Ciarapica A (2017e) Landscape, territory, knowledge. From Umbria region’s atlas of objectives to the “Landscape Contracts” of Trasimeno Lake. In Crisis landscapes: opportunities and weaknesses for a sustainable development. FrancoAngeli, Roma, pp 87–110

    Google Scholar 

  • Bianconi F, Filippucci M, Clemente M, Salvati L (2017f) Green infrastructures and biodiverse urban gardens for regenerating urban spaces. In: Gospodini A (ed) Book of abstracts of the international conference on changing cities III spatial, design, landscape; socio-economic dimensions: 26–30 June 2017, Syros, Delos, Mykonos Islands, Greece. Grafima Publications, Thessaloniki, pp 42–42

    Google Scholar 

  • Bianconi F, Filippucci M, Margutti M, Stramaccia M (2017g) Evoluzioni morfologiche di transpoliedri. Eloquenza delle immagini per generare strutture tensegrali Morphological evolutions of transpolyhedra. Eloquence of the images to generate tensegrity structures XY(3):4–15

    Google Scholar 

  • Bianconi F, Filippucci M, Margutti M, Stramaccia M (2018) Drawing Tensegrity, discover trans-polyhedra. In: D’Uva D (ed) Analyzing form and morphogenesis in modern architectural contexts. New York: IGI Global, pp 41–68 https://doi.org/10.4018/978-1-5225-3993-3.ch003

  • Bianconi F, Clemente M, Filippucci M, Salvati L (2018a) Re-sewing the urban periphery. A green strategy for Fontivegge District in Perugia. TEMA 11: 107–118

    Google Scholar 

  • Bianconi F, Filippucci M, Ciculi L (2018b) The form of music: experiments between cymatics and engineering. In Nexus 2018 architecture and mathematics conference book. Kim Williams Book, pp 233–244

    Google Scholar 

  • Bianconi F, Filippucci M, Clemente M, Salvati L (2018c) Regenerating urban spaces under place-specific social contexts: a brief commentary on green infrastructures for landscape conservation. Int J Soc Sci 2:18–32. https://doi.org/10.20472/SS.2017.6.2.002

  • Bianconi F, Filippucci M, Margutti M, Stramaccia M (2018d) Drawing tensegrity, discover trans-polyhedra. In D’Uva D (ed) Analyzing form and morphogenesis in modern architectural contexts. IGI Global, New York, pp 41–68. https://doi.org/10.4018/978-1-5225-3993-3.ch003

  • Bianconi F, Filippucci M, Seccaroni M (2018e) Drawing architectonic choices. Representation and optimization in design pathway. In: De-sign environment landscape city. Genova University Press, Genova, p 47

    Google Scholar 

  • Bianconi F, Filippucci M, Seccaroni M (2018f) Rappresentazione e variazione della forma architettonica per l’ottimizzazione emergetica ed energetica. In: 18th CIRIAF national congress sustainable development, human health and environmental protection. Perugia, p Cod_018

    Google Scholar 

  • Bidgoli A, Cardoso-Llach D (2015) Towards a motion grammar for robotic stereotomy. In: Ikeda Y, Herr CM, Holzer D, Kaijima S, Kim MJ (eds) Emerging experience in past, present and future of digital architecture. The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong, pp 723–732

    Google Scholar 

  • Bittermann MS (2009) Intelligent design objects (IDO): a cognitive approach for performance-based design. www.boekenbent.com

  • Blessing WW, Landauer AA, Coltheart M (1967) The effect of false perspective cues on distance- and size-judgments: an examination of the invariance hypothesis. Am J Psychol 80(2):250. https://doi.org/10.2307/1420984

    Article  Google Scholar 

  • Block P, Rippmann M, Van Mele T, Escobedo D (2017) The Armadillo Vault: balancing computation and traditional craft. In: Menges A, Sheil B, Glinn T, Skavara M (eds) Fabricate 2017: rethinking design and construction. UCL Press, London, pp 286–293

    Google Scholar 

  • Bolles RC, Bailey DE (1956) Importance of object recognition in size constancy. J Exp Psychol 51(3):222–225. https://doi.org/10.1037/h0048080

    Article  Google Scholar 

  • Bosse A (1643a) La pratique du trait à preuves, de Mr Desargues Lyonnois, pour la coupe des pierres en l’architecture. Impr. Des-Hayes

    Google Scholar 

  • Bosse A (1643b) La pratique du trait à preuves de Mr Desargues,… pour la coupe des pierres … Impr. Des-Hayes

    Google Scholar 

  • Bouzanjani BF, Leach N, Huang A, Fox M, Pomona CP (2013) Alloplastic architecture: the design of an interactive tensegrity structure. In: Beesley P, Khan O, Stacey M (eds) Adaptive architecture: ACADIA 2013. Riverside Architectural Press, Toronto, pp 129–136

    Google Scholar 

  • Brown A (2014) The genius of Japanese carpentry: the secrets of a craft. Tuttle Publishing, Clarendon

    Google Scholar 

  • Brown NC, Mueller CT (2016) Design for structural and energy performance of long span buildings using geometric multi-objective optimization. Energy Build 127:748–761. https://doi.org/10.1016/J.ENBUILD.2016.05.090

    Article  Google Scholar 

  • Brown N, Mueller C (2017) Designing with data: moving beyond the design space catalog. Acadia 2017 Discipline + Distruption. MIT Press, Cambridge, pp 154–163

    Google Scholar 

  • Bruce J, Caluwaerts K, Iscen A, Sabelhaus AP, SunSpiral V (2014) Design and evolution of a modular tensegrity robot platform. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3483–3489. https://doi.org/10.1109/ICRA.2014.6907361

  • Brusati C (1995) Artifice and illusion: the art and writing of Samuel van Hoogstraten. University of Chicago Press, Chicago

    Google Scholar 

  • Buckminster Fuller R (1961) Tensegrity. Portfolio Artnews Ann 4:112–127

    Google Scholar 

  • Buckminster Fuller R (1975) Synergetics: explorations in the geometry of thinking. Macmillan Publishing, Basingstoke

    Google Scholar 

  • Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans. Series A, Mathematical, Physical, and Engineering Sciences 367(1893):1541–1557. https://doi.org/10.1098/rsta.2009.0003

    Article  Google Scholar 

  • Burkhardt RW (2008) A practical guide to tensegrity design. Cambridge

    Google Scholar 

  • Burry M (2014) From descriptive geometry to smartgeometry: first steps towards digital architecture. In: Peters B, Peters T (eds) Inside smartgeometry. Wiley, Chichester, West Sussex, United Kingdom, pp 154–165. https://doi.org/10.1002/9781118653074.ch13

    Chapter  Google Scholar 

  • Calladine CR (1978) Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. Int J Solids Struct 14(2):161–172. https://doi.org/10.1016/0020-7683(78)90052-5

    Article  MATH  Google Scholar 

  • Castronova E (2007) Universi sintetici: come le comunità online stanno cambiando la società e l’economia. Mondadori, Milan

    Google Scholar 

  • Cefalo M, Mirats Tur JM (2010) Real-time self-collision detection algorithms for tensegrity systems. Int J Solids Struct 47(13):1711–1722. https://doi.org/10.1016/J.IJSOLSTR.2010.03.010

    Article  MATH  Google Scholar 

  • Chandana P, Lipson H, Cuevas FJV (2005) Evolutionary form-finding of tensegrity structures. In Proceedings of the 2005 conference on genetic and evolutionary computation—GECCO’05. ACM Press, New York, New York, USA, p 3. https://doi.org/10.1145/1068009.1068011

  • Chaszar A, Glymph J (2010) CAD/CAM in the business of architecture, engineering and construction. In: Corser R (ed) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, Princeton, pp 86–93

    Google Scholar 

  • Chen L, Sass L (2017) Generative computer-aided design: multi-modality large-scale direct physical production. Comput Aided Des Appl 14(1):83–94. https://doi.org/10.1080/16864360.2016.1199758

    Article  Google Scholar 

  • Chilton JC, Tang G (2016) Timber gridshells: architecture, structure and craft. Routledge, London

    Google Scholar 

  • Clune J, Lipson H (2011) Evolving three-dimensional objects with a generative encoding inspired by developmental biology motivation and previous work. Eur Conf Artif Life. MIT Press, Cambridge, pp 144–148

    Google Scholar 

  • Connelly R, Back A (1998) Mathematics and tensegrity. Am Sci 86:142–151. https://doi.org/10.2307/27856980

    Article  Google Scholar 

  • Connelly R, Whiteley W (1992) The stability of tensegrity frameworks. Int J Space Struct 7(2):153–163. https://doi.org/10.1177/026635119200700208

    Article  Google Scholar 

  • Cornish V (1935) Scenery and the sense of sight. University Press, Cambridge

    Google Scholar 

  • Correa D, Papadopoulou A, Guberan C, Jhaveri N, Reichert S, Menges A, Tibbits S (2015) 3D-printed wood: programming hygroscopic material transformations. 3D Printing Addit Manuf 2(3):106–116. https://doi.org/10.1089/3dp.2015.0022

  • Corser R (2010) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, Princeton

    Google Scholar 

  • Couldry N, Powell A (2014) Big data from the bottom up. Big Data Soc 1(2). https://doi.org/10.1177/2053951714539277

  • Cully A, Clune J, Tarapore D, Mouret J-B (2015) Robots that can adapt like animals. Nature 521:503–507. https://doi.org/10.1038/nature14422

    Article  Google Scholar 

  • Cz P (1896) Handbuch der physiologischen Optik. Monatshefte Für Mathematik Und Physik. https://doi.org/10.1007/BF01708548

  • d’Estrée Sterk T (2003) Using actuated tensegrity structures to produce a responsive architecture. In: Klinger KR (ed) Crossroads of digital discourse. Ball State University, pp 85–93

    Google Scholar 

  • Dangel U (2016) Turning point in timber construction: a new economy. Birkhäuser, Basilea

    Google Scholar 

  • Davis J, Edgar T, Porter J, Bernaden J, Sarli M (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47:145–156. https://doi.org/10.1016/J.COMPCHEMENG.2012.06.037

    Article  Google Scholar 

  • Dawson C, Vincent JFV, Rocca A-M (1997) How pine cones open. Nature 390(6661):668. https://doi.org/10.1038/37745

    Article  Google Scholar 

  • De Azambuja Varela P, Sousa JP (2016) Revising stereotomy through digital technology. In: Herneoja A, Österlund T, Markkanen P (eds) Complexity & simplicity—proceedings of the 34th eCAADe conference. University of Oulu, Oulu, pp 427–434

    Google Scholar 

  • De L’Orme P (1568) Le premier tome de l’architecture. Fédéric Morel, Paris

    Google Scholar 

  • De La Hire P (1596) Traité de la coupe des pierres. Bibliothèque de l’Institut de France, Paris

    Google Scholar 

  • de Rubertis R (2012) Piramide visiva. Retrieved 28 Aug 2018 from http://www.wikitecnica.com/piramide-visiva/

  • de Wit MM, van der Kamp J, Withagen R (2015) Visual illusions and direct perception: elaborating on Gibson’s insights. New Ideas Psychol 36:1–9. https://doi.org/10.1016/J.NEWIDEAPSYCH.2014.07.001

    Article  Google Scholar 

  • Debray R (1994) Vie et mort de l’image une histoire du regard en Occident. Gallimard, Paris

    Google Scholar 

  • Deleuze, G. (1994). Difference and repetition. Columbia University Press

    Google Scholar 

  • Deleuze G, Guattari F (1987) A thousand plateaus: capitalism and schizophrenia. University of Minnesota Press

    Google Scholar 

  • Dellaert BGC, Stremersch S (2005) Marketing mass-customized products: striking a balance between utility and complexity. J Mark Res 42(2):219–227. https://doi.org/10.1509/jmkr.42.2.219.62293

    Article  Google Scholar 

  • Desarguer G (1640) Brouillon project d’exemples d’une manière universelle du sieur G.D.L., touchant la pratique du trait à preuve pour la coupe des pierres en architecture …. Melchor Tavernier, Paris

    Google Scholar 

  • Di Carlo B (2008) The wooden roofs of leonardo and new structural research. Nexus Netw J 10(1):27–38. https://doi.org/10.1007/s00004-007-0054-x

    Article  MathSciNet  Google Scholar 

  • Dogra JK, Kaur B, Parsarokh A (2015) tensegri[city]. ELISAVA, Barcellona

    Google Scholar 

  • Duarte JP (2005) A discursive grammar for customizing mass housing: the case of Siza’s houses at Malagueira. Autom Constr 14(2):265–275. https://doi.org/10.1016/J.AUTCON.2004.07.013

    Article  Google Scholar 

  • Duray R, Ward PT, Milligan GW, Berry WL (2000) Approaches to mass customization: configurations and empirical validation. J Oper Manag 18(6):605–625. https://doi.org/10.1016/S0272-6963(00)00043-7

    Article  Google Scholar 

  • Duro-Royo J, Oxman N (2015) Towards fabrication information modeling (FIM): four case models to derive designs informed by multi-scale trans-disciplinary data. MRS Proceedings, 1800. https://doi.org/10.1557/opl.2015.647

  • Eastman CM (2011) BIM handbook: a guide to building information modeling for owners, managers, designers, engineers and contractors. Wiley, Hoboken. Retrieved from https://books.google.it/books?id=aCi7Ozwkoj0C&dq=Eastman,+C.+(2011+BIM+handbook:+a+guide+to+building+information+modeling+for+owners,+managers,+designers,+engineers,+and+contractors&hl=it&source=gbs_navlinks_s

  • Eastman C, Lee J, Jeong Y, Lee J (2009) Automatic rule-based checking of building designs. Autom Constr 18(8):1011–1033. https://doi.org/10.1016/J.AUTCON.2009.07.002

    Article  Google Scholar 

  • Elkins J (1994) The poetics of perspective. Cornell University Press, London

    Google Scholar 

  • Emmerich DG (1988) Structures tendues et autotendantes Monographies de géometrie constructive. Editions de la La Villette, Paris

    Google Scholar 

  • Emmerich DG (1996) Emmerich on self-tensioning structures. Int J Space Struct 11(1–2):29–36. https://doi.org/10.1177/026635119601-205

    Article  Google Scholar 

  • Epstein W, Park J, Casey A (1961) The current status of the size-distance hypotheses. Psychol Bull 58(6):491–514. https://doi.org/10.1037/h0042260

    Article  Google Scholar 

  • Evans R (1995) The projective cast: architecture and its three geometries. MIT Press, Cambridge

    Google Scholar 

  • Eversmann P, Gramazio F, Kohler M (2017) Robotic prefabrication of timber structures: towards automated large-scale spatial assembly. Constr Rob 1(1–4):49–60. https://doi.org/10.1007/s41693-017-0006-2

    Article  Google Scholar 

  • Eigensatz M, Kilian M, Schiftner A, Mitra NJ, Pottmann H, Pauly M, et al. (2010) Paneling architectural freeform surfaces. In: ACM transactions on graphics. Proceedings of ACM SIGGRAPH, vol 29. ACM Press, New York, p 1. https://doi.org/10.1145/1833349.1778782

  • Fagerström G (2009) Dynamic relaxation of tensegrity structures. In: Proceedings of the 14th international conference on computer aided architectural design research in Asia/Yunlin (Taiwan) 22–25 Apr 2009. CAADRIA, Taiwan, pp 553–562 (pp 553–562)

    Google Scholar 

  • Fallacara G (2006) Digital stereotomy and topological transformations: reasoning about shape building. In: Proceedings of second international congress construction history. Queen’s College Cambridge, Cambridge, pp 1075–1092

    Google Scholar 

  • Fallacara G (2007) Verso una progettazione stereotomica: nozioni di stereotomia, stereotomia digitale e trasformazioni topologiche : ragionamenti intorno alla costruzione della forma. Aracne, Roma

    Google Scholar 

  • Fernando S, Saunders R, Weir S (2015). Surveying stereotomy: investigations in arches, vaults and digital stone masonry. In: Architectural Research Centers Consortium (ed) ARCC 2015 conference—the future of architectural research. Perkins + Will, pp 82–89

    Google Scholar 

  • Field JV (1987) Linear perspective and the projective geometry of Girard Desargues. Nuncius 2(2):3–40. https://doi.org/10.1163/182539187X00015

    Article  MathSciNet  Google Scholar 

  • Filippucci M (2010a) Nuvole di pixel. La fotomodellazione con software liberi per il rilievo d’architettura. DISEGNARE CON…, 3:50–63. https://doi.org/10.6092/issn.1828-5961/2081

  • Filippucci M (2010b) Virtual in virtual, discretization in discretization. Shape and perception in parametric modelling for renewing descriptive geometry. In: Proceedings of ICGG 2010 14TH international conference on geometry and graphics. Naomi Ando et al, pp 129–130

    Google Scholar 

  • Filippucci M (2010c) Virtual in virtual, discretization in discretization. Shape and perception in parametric modelling for renewing descriptive geometry. In: Ando N et al (ed) Proceedings of ICGG 2010 14TH international conference on geometry and graphics. Kyoto, pp 129–130

    Google Scholar 

  • Filippucci M (2012a) Dalla forma urbana all’immagine della città. Percezione e figurazione all’origine dello spazio costruito. Sapienza Università di Roma

    Google Scholar 

  • Filippucci M (2012b) Rappresentazione al quadrato. Il disegno generativo per il rinnovamento della geometria descrittiva. In: Carlevalis L, De Carlo L, Migliari R (eds) Attualità della Geometria Descrittiva Seminario nazionale sul rinnovamento della Geometria descrittiva, Roma dicembre 2009, marzo 2010. Gangemi, Rome

    Google Scholar 

  • Filippucci M (2015) Primitive Urbane. Analisi interpretativa dei processi figurativi dell’immagine della città. In: Novello G, Marotta A (eds). Gangemi edizioni, Torino, p 1219

    Google Scholar 

  • Filippucci M, Bianconi F, Andreani S (2016a) Computational design and built environments: the quest for an alternative role of the digital in architecture. 3D printing: breakthroughs in research and practice. https://doi.org/10.4018/978-1-5225-1677-4.ch019

  • Filippucci M, Rinchi G, Brunori A, Nasini L, Regni L, Proietti P (2016b) Architectural modelling of an olive tree. Generative tools for the scientific visualization of morphology and radiation relationships. Ecol Inf 36. https://doi.org/10.1016/j.ecoinf.2016.09.004

  • Filippucci M, Bianconi F, Bettollini E, Meschini M, Seccaroni M (2017) Survey and representation for rural landscape. New tools for new strategies: the example of Campello Sul Clitunno. In: Proceedings 2017. International and interdisciplinary conference IMMAGINI? Image and imagination between representation, communication, education and psychology, vol 1. MDPI, Bressanone, p 934. https://doi.org/10.3390/proceedings1090934

  • Filippucci M, Bianconi F, Bettollini E, Meschini M (2018) Visual perception analysis for landscape evaluation. an experimental case, Campello Sul Clitunno. De_Sign Environment Landscape City, vol p. Genova University Press, Genova, p 113

    Google Scholar 

  • Floreano D, Mattiussi C (2009) Bio-inspired artificial intelligence: theories, methods, and technologies. Scalable Comput Pract Exp 10(4). https://doi.org/10.12694/scpe.v10i4.623

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Oxford

    MATH  Google Scholar 

  • Frézier AF (1737a) La théorie et la pratique de la coupe des pierres et des bois pour la construction des voûtes et autres parties des bâtiments civils, militaires, ou Traité de stéréotomie, à l’usage de l’architecture. Tome 3 /, par M. Frézier,… Paris: L.H. Guerin

    Google Scholar 

  • Frézier AF (1737b) La théorie et la pratique de la coupe des pierres et des bois pour la construction des voûtes et autres parties des bâtiments civils; militaires, ou Traité de stéréotomie, à l’usage de l’architecture. Tome 3 /, par M. Frézier,… Paris: L.H. Guerin

    Google Scholar 

  • Frézier AF (1760) Élémens de stéréotomie, à l’usage de l’architecture, pour la coupe des pierres. Jombert, Paris

    Google Scholar 

  • Fuller RB (1963) Ideas and integrities. Macmillan, New York

    Google Scholar 

  • Gehringer WL, Engel E (1986) Effect of ecological viewing conditions on the Ames’ distorted room illusion. J Exp Psychol Hum Percept Perform 12(2):181–185

    Google Scholar 

  • Gherardini F, Leali F (2017) Reciprocal frames in temporary structures: an aesthetical and parametric investigation. Nexus Netw J 19(3):741–762. https://doi.org/10.1007/s00004-017-0352-x

    Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gioseffi D (1957) Perspectiva artificialis: Per la storia della prospettiva; spigolature e appunti. Università Degli Studi di Trieste, Facoltà di Lettere e Filosofia, Trieste

    Google Scholar 

  • Goel AK, McAdams DA, Stone RB (2014) Biologically inspired design. Springer, London. https://doi.org/10.1007/978-1-4471-5248-4

    Book  Google Scholar 

  • Gogel WC (1969) The sensing of retinal size. Vision Res 9(9):1079–1094. https://doi.org/10.1016/0042-6989(69)90049-2

    Article  Google Scholar 

  • Gogel WC (1976) An indirect method of measuring perceived distance from familiar size. Percept Psychophys 20(6):419–429. https://doi.org/10.3758/BF03208276

    Article  Google Scholar 

  • Gogel WC, Tietz JD (1977) Eye fixation and attention as modifiers of perceived distance. Percept Mot Skills 45(2):343–362. https://doi.org/10.2466/pms.1977.45.2.343

    Article  Google Scholar 

  • Gombrich EH (1960) Art and Illusion: a study in the psychology of pictorial representation. Phaïdon Press, London

    Google Scholar 

  • Gough M (1998) In the laboratory of constructivism: Karl Ioganson’s cold structures. October, 84, 90. https://doi.org/10.2307/779210

  • Gramazio F, Kohler M (2014) Made by robots: challenging architecture at the large scale AD. Wiley, London

    Google Scholar 

  • Gramazio F, Kohler N, Oesterle S (2010) Encoding material. In: Oxman R, Oxman R (eds) The new structuralism: design, engineering and architectural technologies. Wiley, pp 108–115. Retrieved from https://books.google.it/books?id=035HAQAAIAAJ&q=The+new+Structuralism:+Design,+Engineering+and+Architectural+Technologies+AD&dq=The+new+Structuralism:+Design,+Engineering+and+Architectural+Technologies+AD&hl=it&sa=X&ved=0ahUKEwjirozclondAhVMkiwKHQFfBbEQ6A

  • Greenough H (1947) Form and function: remarks on art, design, and architecture. University of California Press, Berkeley

    Google Scholar 

  • Gregory RL (1970) The intelligent eye. McGraw-Hill Book Company, New York

    Google Scholar 

  • Gregory RL (1987) Analogue transactions with Adelbert Ames. Perception 16(3):277–282. https://doi.org/10.1068/p160277

    Article  Google Scholar 

  • Gregory RL (1994) Even odder perceptions. Routledge, London

    Google Scholar 

  • Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented Cuts. Adv Mater 28(2):385–389. https://doi.org/10.1002/adma.201503653

    Article  Google Scholar 

  • Grobman YJ, Neuman E (eds) (2013) Performalism: form and performance in digital architecture. Routledge, New York

    Google Scholar 

  • Gruber P, Jeronimidis G (2012) Has biomimetics arrived in architecture? Bioinspiration Biomimetics 7(1):010201. https://doi.org/10.1088/1748-3182/7/1/010201

    Article  Google Scholar 

  • Hanaor A (1992) Aspects of design of double-layer tensegrity domes. Int J Space Struct 7(2):101–113. https://doi.org/10.1177/026635119200700204

    Article  Google Scholar 

  • Hensel M (2010) Performance-oriented architecture: towards a biological paradigm for architectural design and the built environment. FORMakademisk 3(1):36–56. https://doi.org/10.7577/formakademisk.138

    Article  Google Scholar 

  • Hensel M (2013) Performance-oriented architecture: rethinking architectural design and the built environment. Wiley, Chichester

    Google Scholar 

  • Hensel M, Menges A (2006) Morpho-ecologies. Architectural Association, London

    Google Scholar 

  • Hensel M, Menges A (2008) Inclusive performance: efficiency versus effectiveness towards a morpho-ecological approach for design. Architectural Design 78(2):54–63. https://doi.org/10.1002/ad.642

    Article  Google Scholar 

  • Hensel M, Menges A, Weinstock M (2010) Emergent technologies and design. Routledge, New York

    Google Scholar 

  • Herzog T, Natterer J, Schweitzer R, Volz M, Winter W (2004) Timber construction manual. DETAIL - Birkhäuser, Basel

    Google Scholar 

  • Hofman E, Halman JIM, Ion RA (2006) Variation in housing design: identifying customer preferences. Housing Stud 21(6):929–943. https://doi.org/10.1080/02673030600917842

    Article  Google Scholar 

  • Holstov A, Bridgens B, Farmer G (2015) Hygromorphic materials for sustainable responsive architecture. Constr Build Mater 98:570–582. https://doi.org/10.1016/J.CONBUILDMAT.2015.08.136

    Article  Google Scholar 

  • Holstov A, Farmer G, Bridgens B (2017) Sustainable materialisation of responsive architecture. Sustainability 9(3):435. https://doi.org/10.3390/su9030435

    Article  Google Scholar 

  • Holway AH, Boring EG (1941) Determinants of apparent visual size with distance variant. Am J Psychol 54(1):21. https://doi.org/10.2307/1417790

    Article  Google Scholar 

  • Huang JC (2008) Participatory design for prefab house: using internet and query approach of customizing prefabricated houses. VDM Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  • Iafrate F (2018) Artificial intelligence and big data: the birth of a new intelligence. Wiley, London

    Google Scholar 

  • Ittelson WH, Kilpatrick FP (1952) Equivalent configurations and the monocular and binocular distorted rooms. Human nature from the transactional point of view. Institute for Associated Research, New York, pp 41–55

    Google Scholar 

  • Iwamoto L (2009) Digital fabrications: architectural and material techniques. Princeton Architectural Press, Princeton

    Google Scholar 

  • Jabi W (2013) Parametric design for architecture. Laurence King, London

    Google Scholar 

  • Jones NL (2009a) Architecture as a complex adaptive system. Faculty of the Graduate School of Cornell University

    Google Scholar 

  • Jones NL (2009b) Architecture as a complex adaptive system. Faculty of the Graduate School of Cornell University

    Google Scholar 

  • Kaufmann H, Nerdinger W (eds) (2011) Building with timber: paths into the future. Prestel Verlag, Munich

    Google Scholar 

  • Kicinger R, Arciszewski T, Jong K De (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83(23–24):1943–1978. https://doi.org/10.1016/J.COMPSTRUC.2005.03.002

    Article  Google Scholar 

  • Kilpatrick FP, Ittelson WH (1953) The size-distance invariance hypothesis. Psychol Rev 60(4):223–231. https://doi.org/10.1037/h0060882

    Article  Google Scholar 

  • Knaack U, Chung-Klatte S, Hasselbach R (2012) Prefabricated systems: principles of construction. Birkhäuser, Basel

    Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspiration Biomimetics 7(1). https://doi.org/10.1088/1748-3182/7/1/015002

  • Knippers J, Nickel KG, Speck T (2016) Biomimetic research for architecture and building construction: biological design and integrative structures. Springer, Cham

    Google Scholar 

  • Koenderink J, van Doorn A, Pepperell R, Pinna B (2016) On right and wrong drawings. Art Percept 4(1–2):1–38. https://doi.org/10.1163/22134913-00002043

    Article  Google Scholar 

  • Kohlhammer T, Kotnik T (2011) Systemic behaviour of plane reciprocal frame structures. Struct Eng Int 21(1):80–86. https://doi.org/10.2749/101686611X12910257102596

    Article  Google Scholar 

  • Kolarevic B (2004) Architecture in the digital age: design and manufacturing. Taylor & Francis, New York

    Google Scholar 

  • Kolarevic B (2015) From mass customisation to design ‘democratisation’. Architectural Des 85(6):48–53. https://doi.org/10.1002/ad.1976

    Article  Google Scholar 

  • Kolarevic B, Klinger K (2008) Manufacturing material effects: rethinking design and making in architecture. Routledge, New York

    Google Scholar 

  • Kolarevic B, Malkawi A (2005) Peformative architecture. Routledge, London

    Google Scholar 

  • Konaković M, Crane K, Deng B, Bouaziz S, Piker D, Pauly M (2016) Beyond developable. ACM Trans Graph 35(4):1–11. https://doi.org/10.1145/2897824.2925944

    Article  Google Scholar 

  • Krausse J, Lichtenstein C (2017) Your private sky R. Buckminster Fuller: the art of design science. Lars Müller, Zurich

    Google Scholar 

  • Krieg O, Christian Z, Correa D, Menges A, Reichert S, Rinderspacher K, Schwinn T (2014) HygroSkin: meteorosensitive pavilion. In: Gramazio F, Kohler M, Langenberg S (eds) FABRICATE: negotiating design and making. UCL Press, Zürich, pp 272–279

    Google Scholar 

  • Krieg OD, Schwinn T, Menges A, Li J-M, Knippers J, Schmitt A, Schwieger V (2015) Biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In Block P, Knippers J, Mitra NJ, Wang W (eds) Advances in architectural geometry 2014. Springer International Publishing, Cham, pp 109–125. https://doi.org/10.1007/978-3-319-11418-7_8

  • Kuhlmann D (2011) In: Gruber P, Bruckner D, Hellmich C, Schmiedmayer HB, Stachelberger H, Gebeshuber IC (eds) Biomorphism in architecture: speculations on growth and form. Springer, Berlin, pp 149–178. https://doi.org/10.1007/978-3-642-11934-7_8

    Chapter  Google Scholar 

  • Kuroishi I (2015) Mathematics of carpentry in historic Japanese architecture. Architecture and mathematics from antiquity to the future. Springer International Publishing, Cham, pp 333–347. https://doi.org/10.1007/978-3-319-00137-1_23

    Chapter  Google Scholar 

  • Lalvani H (1996) Origins of tensegrity: views of Emmerich, Fuller and Snelson. Int J Space Struct 11(1–2):27–55. https://doi.org/10.1177/026635119601-204

    Article  Google Scholar 

  • Latour B, Weibel P (2002) Iconoclash: beyond the image wars in science, religion, and art. Center for Art and Media, Karlsruhe

    Google Scholar 

  • Laugier M-A (1735) Essai sur l’architecture. chez Duchesne, Paris

    Google Scholar 

  • Lawrence TT (2003) Chassis+Infill: a consumer-driven, open source building approach for adaptable, mass customized housing. Institute of Technology, Massachusetts

    Google Scholar 

  • Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114. https://doi.org/10.1016/J.MATDES.2016.02.018

    Article  Google Scholar 

  • Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Yosinski J (2018) The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Neural and Evolutionary Computing

    Google Scholar 

  • Lenyra S, Campos Titotto M, Egmar T, Deifeld C, Marcelo De Oliveira Pauletti R (2006) The monument to the Futile FormIi: conception, simulation and realization of a tensegrity membrane sculpture. La Tensored Rlte

    Google Scholar 

  • Leroy C-F-A (1857) Traité de stéréotomie, comprenant les applications de la géométrie descriptive à la théorie des ombres, la perspective linéaire, la gnomonique, la coupe des pierres et la charpente, avec un atlas… par C.-F.-A. Leroy,… 2e édition… par M. E. Martelet, (Gauthiers-), Paris. Retrieved from http://catalogue.bnf.fr/ark:/12148/cb30799169v

  • Li H, Huang T, Kong CW, Guo HL, Baldwin A, Chan N, Wong J (2008) Integrating design and construction through virtual prototyping. Autom Constr 17(8):915–922. https://doi.org/10.1016/J.AUTCON.2008.02.016

    Article  Google Scholar 

  • Liapi K (2004) A computer based system for the design and fabrication of tensegrity structures. In: Beesley P, Cheng NY-W, Williamson RS (eds) Fabrication examining the digital practice of architecture: proceedings of the 2004 AIA/ACADIA fabrication conference. ACADIA, Cambridge

    Google Scholar 

  • Lonardo E (2011) Strutture Tensegrali. Retrieved from https://issuu.com/emiliolonardo/docs/strutture_tensegrali_pubb

  • Loonen RCGM, Trčka M, Cóstola D, Hensen JLM (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25:483–493. https://doi.org/10.1016/J.RSER.2013.04.016

    Article  Google Scholar 

  • López M, Rubio R, Martín S, Croxford Ben (2017) How plants inspire façades. From plants to architecture: biomimetic principles for the development of adaptive architectural envelopes. Renew Sustain Energy Rev 67:692–703. https://doi.org/10.1016/J.RSER.2016.09.018

    Article  Google Scholar 

  • Loria G (1931) Il passato e il presente delle principali teorie geometriche. Cedam, Padova

    MATH  Google Scholar 

  • Lynn G (1999) Animate form. Princeton Architectural Press, New York

    Google Scholar 

  • Marks RW, Buckminster Fuller R (1973) The Dymaxion world of Buckminster Fuller. Anchor Books, New York

    Google Scholar 

  • Masic M, Skelton RE, Gill PE (2005) Algebraic tensegrity form-finding. Int J Solids Struct 42(16–17):4833–4858. https://doi.org/10.1016/J.IJSOLSTR.2005.01.014

    Article  MathSciNet  MATH  Google Scholar 

  • Masic M, Skelton RE, Gill PE (2006) Optimization of tensegrity structures. Int J Solids Struct 43(16):4687–4703. https://doi.org/10.1016/J.IJSOLSTR.2005.07.046

    Article  MATH  Google Scholar 

  • Mattheck C (1998) Design in nature: learning from trees. Springer, Berlin, Heidelberg

    Google Scholar 

  • Mazzoleni I (2013) Architecture follows nature: biomimetic principles for innovative design. CRC Press, New York

    Google Scholar 

  • McDonald RP, O’Hara PT (1964) Size-distance invariance and perceptual constancy. Am J Psychol 77(2):276. https://doi.org/10.2307/1420135

    Article  Google Scholar 

  • McGee W, Ponce de León M (eds) (2014) Robotic fabrication in architecture, art and design 2014. Springer Science & Business Media, Cham

    Google Scholar 

  • McHale J (1964) R. Buckminster Fuller. Il Saggiatore, Milano

    Google Scholar 

  • Medaglia AL (2007) An object-oriented framework for rapid genetic algorithm development. In: Rennard J (ed) Handbook of research on nature-inspired computing for economics and management. IGI Global, Hershey, pp 608–624. https://doi.org/10.4018/978-1-59140-984-7.ch040

    Chapter  Google Scholar 

  • Menges A (2009) Performative wood: integral computational design for timber constructions. In: d’Estrée Sterk T, Loveridge R, Pancoast D (eds) Building a better tomorrow—proceedings of the 29th annual conference of the association for computer aided design in architecture. Association for Computer-Aided Design in Architecture, Chicago, pp 66–74

    Google Scholar 

  • Menges A (2011) Integrative design computation: integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions. In: ACADIA 11: integration through computation. Association for Computer Aided Design in Architecture, Banff, p 413

    Google Scholar 

  • Menges A (2012) Material computation: higher integration in morphogenetic design. Architectural Des 82(2):14–21. https://doi.org/10.1002/ad.1374

    Article  Google Scholar 

  • Menges A (2013) Morphospaces of robotic fabrication. In: Brell-Çokcan S, Braumann J (eds) Rob | Arch 2012. Springer, Vienna, pp 28–47. https://doi.org/10.1007/978-3-7091-1465-0_3

  • Menges A (2017) Integrative design computation for advancing wood architecture. In: Menges A, Schwinn T, Krieg OD (eds) advancing wood architecture. Routledge, London, pp 97–110

    Google Scholar 

  • Menges A, Ahlquist S (2011) Computational design thinking. Wiley, London

    Google Scholar 

  • Menges A, Reichert S (2012) material capacity: embedded responsiveness. Architectural Des 82(2):52–59. https://doi.org/10.1002/ad.1379

    Article  Google Scholar 

  • Menges A, Schwinn T, Krieg OD (eds) (2017a) Advancing wood architecture. Routledge, London

    Google Scholar 

  • Menges A, Sheil B, Glynn R, Skavara M (2017b) Fabricate: rethinking design and construction. UCL Press, London

    Google Scholar 

  • Merleau-Ponty M (1962) Senso e non senso (1948). Il Saggiatore, Milan

    Google Scholar 

  • Migliari R (2000) La rappresentazione e il controllo dello spazio: morte e trasfigurazione della Geometria Descrittiva. Isegnare: Idee, Immagini XI(20–21):9–18

    Google Scholar 

  • Migliari R, Romor J (2015) Perspective: theories and experiments on the veduta vincolata (restricted sight). J Geom Graph 19(1):57–77

    MathSciNet  Google Scholar 

  • Mirats Tur JM, Juan SH (2009) Tensegrity frameworks: dynamic analysis review and open problems. Mech Mach Theory 44(1):1–18. https://doi.org/10.1016/J.MECHMACHTHEORY.2008.06.008

    Article  MATH  Google Scholar 

  • Mitchison GJ, Westheimer G (1984) The perception of depth in simple figures. Vision Res 24(9):1063–1073. https://doi.org/10.1016/0042-6989(84)90084-1

    Article  Google Scholar 

  • Monge G (1789) Géométrie descriptive. Boudouin, Paris

    Google Scholar 

  • Moscati A (2012) La prospettiva pratica. Gli strumenti per costruire la prospettiva. In: De Carlo L, Migliari R, Carlevaris L (eds) Attualità della geometria descrittiva : seminario nazionale sul rinnovamento della geometria descrittiva, Roma, dicembre 2009-marzo 2010 (Gangemi). Gangemi, Rome. Retrieved from https://books.google.it/books?id=EskELgEACAAJ&dq=attualitàdellageometriaescrittiva&hl=it&source=gbs_book_other_versions

  • Motro R (2003) Tensegrity: structural systems for the future. Kogan Page Science, London

    Google Scholar 

  • Motro R, Raducanu V (2003) Tensegrity systems. Int J Space Struct 18(2):77–84. https://doi.org/10.1260/026635103769518198

    Article  Google Scholar 

  • Murakami H (2001) Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int J Solids Struct 38(20):3599–3613. https://doi.org/10.1016/S0020-7683(00)00232-8

    Article  MATH  Google Scholar 

  • Myers W (2012) Beyond Biomimicry. In: Myers W (ed) Bio design: nature, science, creativity. Museum of Modern Art, London, p 288

    Google Scholar 

  • Nahmens I, Bindroo V (2011) Is customization fruitful in industrialized homebuilding industry? J Constr Eng Manag 137(12):1027–1035. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000396

    Article  Google Scholar 

  • Nakahara Y, Sato H, Nii KP (1995) The complete Japanese joinery. Hartley & Marks, Vancouver

    Google Scholar 

  • Negro A (1996) Il giardino dipinto del Cardinal Borghese: Paolo Bril e Guido Reni nel Palazzo Rospigliosi Pallavicini a Roma. Àrgos, Rome

    Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton Century Crofts, New York

    Google Scholar 

  • Nestorovic M (1987) Metallic integrally tensioned (Tensegrity) Cupola. In: Topping HV (ed) Proceedings of international conference on the design and construction of non-conventional structures. Civil-Comp Ltd., Edinburgh

    Google Scholar 

  • Ohshima T, Igarashi T, Mitani J, Tanaka H (2013) Digital fabrication-volume 1-computation and performance-eCAADe 31|. In: Proceedings of eCAADe 2013 education and research in computer aided architectural design in Europe. eCAADe, Delft, pp 693–702

    Google Scholar 

  • Oppenheim IJ, Williams WO (1997) Mechanics of tensegrity prisms. In: Proceedings of the 14th international symposium on automation & robotics in construction. Pittsburgh

    Google Scholar 

  • Oxman R (2006) Theory and design in the first digital age. Des Stud 27(3):229–265. https://doi.org/10.1016/J.DESTUD.2005.11.002

    Article  Google Scholar 

  • Oxman R (2009) Performative design: a performance-based model of digital architectural design. Environ Plan 36(6):1026–1037. https://doi.org/10.1068/b34149

    Article  MathSciNet  Google Scholar 

  • Oxman R, Oxman R (2010a) Introduction. In: Oxman R, Oxman R (eds) The new structuralism: design, engineering and architectural technologies. Wiley, pp 14–24

    Google Scholar 

  • Oxman R, Oxman R (2010b) The new structuralism: design, engineering and architectural technologies. Wiley, New York

    MATH  Google Scholar 

  • Oxman R, Oxman R (eds) (2014) Theories of the digital in architecture. Routledge, London

    Google Scholar 

  • Page IC, Norman D (2014) Prefabrication and standardisation potential in buildings (SR 312). Branz, Wellington

    Google Scholar 

  • Paoletti I (2018) Informed architecture: computational strategies in architectural design. In: Hemmerling M, Cocchiarella L (eds) Informed architecture: computational strategies in architectural design. Springer, pp 77–88

    Google Scholar 

  • Paris L (2009) Stereotomia del legno. In: Migliari R (ed) Geometria Descrittiva. CittàStudi, Torino, pp 562–588

    Google Scholar 

  • Paronesso A, Passera R (2004) The cloud of Yverdon. In: Motro R (ed) IASS symposium 2004. IASS Secretariat, Madrid, pp 184–185

    Google Scholar 

  • Pastore N (1971) Selective history of theories of visual perception 1650-1950. Oxford University Press, Toronto

    Google Scholar 

  • Pawlyn M (2011) Biomimicry in architecture. RIBA Publishing, London

    Google Scholar 

  • Pearce P (1979) Structure in nature is a strategy for design. MIT Press, Cambridge

    Google Scholar 

  • Pearson M (2011) Generative art: a practical guide using processing. Manning, Greenwich

    Google Scholar 

  • Pecchinenda G (2010) Videogiochi e cultura della simulazione. La nascita dell’ «homo game». Laterza, Roma - Bari

    Google Scholar 

  • Pedersen Zari M (2015) Ecosystem processes for biomimetic architectural and urban design. Architectural Sci Rev 58(2):106–119. https://doi.org/10.1080/00038628.2014.968086

    Article  Google Scholar 

  • Pedretti C (1988) Leonardo architetto. Electa, Milano

    Google Scholar 

  • Peña DM, Llorens I, Sastre R (2010) Application of the tensegrity principles on tensile textile constructions. Int J Space Struct 25(1):57–67. https://doi.org/10.1260/0266-3511.25.1.57

    Article  Google Scholar 

  • Peri G (1884) Applicazioni della geometria descrittiva alle ombre, alla prospettiva lineare e aerea, al taglio delle pietre e del legname (G. Belotti, ed.). Firenze

    Google Scholar 

  • Pérouse de Montclos JM (1985) La vis de Saint-Gilles et l’escalier suspendu dans l’architecture française du XVI siècle in L’escalier dans l’architecture de la Renaissance (Répertoire d’Art et d’Archéologie, Ed.). Picard

    Google Scholar 

  • Pilewski JL, Martin BA (1991) Effects of monocular versus binocular viewing in the ames distorted-room illusion. Percept Mot Skills 72(1):306. https://doi.org/10.2466/pms.1991.72.1.306

    Article  Google Scholar 

  • Pillet J (1887) Traité de stéréotomie (C. Delagra). Paris

    Google Scholar 

  • Pine BJ, Slessor C (1999) Mass customization: the new frontier in business competition. Harvard Business School, Boston

    Google Scholar 

  • Popov V, Juocevicius V, Migilinskas D, Ustinovichius L, Mikalauskas S (2010) The use of a virtual building design and construction model for developing an effective project concept in 5D environment. Autom Constr 19(3):357–367. https://doi.org/10.1016/J.AUTCON.2009.12.005

    Article  Google Scholar 

  • Popovic Larsen O (2003) Conceptual structural design: bridging the gap between architects and engineers. Thomas Telford, London

    Google Scholar 

  • Popovic Larsen O (2008) Reciprocal frame architecture. Architectural Press, Oxford

    Google Scholar 

  • Popper KR (1957) The poverty of historicism. Beacon Press, Boston, pp 123–124

    Google Scholar 

  • Pottmann H, Huang Q, Deng B, Schiftner A, Kilian M, Guibas L et al (2010) Geodesic patterns. ACM Trans Graph 29(4):1. https://doi.org/10.1145/1778765.1778780

  • Pugh A (1976a) An introduction to tensegrity. University of California Press. Retrieved from https://books.google.it/books?id=McEOfJu3NQAC&dq=A.+Pugh.+An+Introduction+to+Tensegrity.+University+of+California+Press,+1976.&lr=&hl=it&source=gbs_navlinks_s

  • Pugh A (1976b) Polyhedra: a visual approach. University of California Press, Berkeley

    MATH  Google Scholar 

  • Rajanen M, Iivari N (2015) Power, empowerment and open source usability. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI ’15, pp 3413–3422. https://doi.org/10.1145/2702123.2702441

  • Ramachandran VS (1990) Visual perception in people and machines. In: Blake A, Troscianko T (eds) AI and the eye. Wiley, London

    Google Scholar 

  • Ratti C, Claudel M (2015) Open source architecture. Thames & Hudson, New York

    Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal AircraftEstablishment, Ministry of Aviation, Farnborough Hants

    Google Scholar 

  • Reichert S, Menges A, Correa D (2015) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput Aided Des 60:50–69. https://doi.org/10.1016/J.CAD.2014.02.010

    Article  Google Scholar 

  • Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Comput Aided Des 35(8):709–726. https://doi.org/10.1016/S0010-4485(03)00003-4

    Article  Google Scholar 

  • Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface 6(39):951–957. https://doi.org/10.1098/rsif.2009.0184

    Article  Google Scholar 

  • Richard R-B (2005) Industrialised building systems: reproduction before automation and robotics. Autom Constr 14(4):442–451. https://doi.org/10.1016/J.AUTCON.2004.09.009

    Article  MathSciNet  Google Scholar 

  • Riether G, Wit AJ (2016) Underwood Pavilion. A parametric tensegrity structure. In: Adriaenssens S, Gramazio F, Kohler M, Menges A, Pauly M (eds) Advances in architectural geometry 2016. Vdf Hochschulverlag AG an der ETH Zürich, pp 114–203

    Google Scholar 

  • Rippmann M, Block P (2011) Digital stereotomy: Voussoir geometry for freeform masonry-like vaults informed by structural and fabrication constraints. In: Proceedings of the IABSE-IASS symposium 2011. IABSE, Boston

    Google Scholar 

  • Roudsari MS, Pak M (2013). Ladybug: a parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. In: Proceedings of the 13th international IBPSA conference. Lyon, pp 3128–3135

    Google Scholar 

  • Rüggeberg M, Burgert I (2015) Bio-inspired wooden actuators for large scale applications. PLoS ONE 10(4):e0120718. https://doi.org/10.1371/journal.pone.0120718

    Article  Google Scholar 

  • Runeson S (1988) The distorted room illusion, equivalent configurations, and the specificity of static optic arrays. J Exp Psychol Hum Percept Perform 14(2):295–304. https://doi.org/10.1037/0096-1523.14.2.295

    Article  Google Scholar 

  • Rutten D (2013) Galapagos: on the logic and limitations of generic solvers. Architectural Des 83(2):132–135. https://doi.org/10.1002/ad.1568

    Article  Google Scholar 

  • Sadao S (1996) Fuller on tensegrity. Int J Space Struct 11(1–2):37–42. https://doi.org/10.1177/026635119601-206

    Article  Google Scholar 

  • Saint Aubin JP (1994) es enjeux architecturaux de la didactique stéréotomique de Desargues. In: Dhombres JG, Sakarovitch J (eds) Desargues en son temps. Librairie scientifique A. Blanchard, Paris

    Google Scholar 

  • Sakamoto T, Ferré A (2008) From control to design: parametric/algorithmic architecture. Actar-D, New York

    Google Scholar 

  • Salvador F, De Holan PM, Piller F (2009) Cracking the code of mass customization. MIT Sloan Manag Rev 50(3):71–79

    Google Scholar 

  • Salvatore M (2012) La stereotomia scientifica in Amédée François Frézier. Prodromi della geometria descrittiva nella scienza del taglio delle pietre. Università degli Studi di Firenze

    Google Scholar 

  • Sanabria SL (1989) From gothic to renaissance stereotomy: The design methods of Philibert de l’Orme and Alonso de Vandelvira. Technol Cult 30(2):266. https://doi.org/10.2307/3105105

    Article  Google Scholar 

  • Sanjurjo Alvarez A (2010) La Vis-de-Saint-Gilles: analyse du modèle dans les traités de coupe des pierres et de son influence sur les traités espagnols de l’âge moderne. In: Carvais R, Guillerme A, Nègre J, Valérie Sakarovitch (eds) Édifice & Artifice. Histoires Constructives. Editions Picard, Paris, pp 679–689

    Google Scholar 

  • Sass L (2006) A Wood Frame grammar: a generative system for digital fabrication. Int J Architectural Comput 4(1):51–67. https://doi.org/10.1260/147807706777008920

    Article  MathSciNet  Google Scholar 

  • Sass L (2012) Direct building manufacturing of homes with digital fabrication. In: Gu N, Wan X (eds) Computational design methods and technologies: applications in CAD, CAM, and CAE education. IGI Global, New York

    Google Scholar 

  • Sass L, Botha M (2006) The instant house: a model of design production with digital fabrication. Int J Architectural Comput 4(4):109–123. https://doi.org/10.1260/147807706779399015

    Article  Google Scholar 

  • Sass L, Oxman R (2006) Materializing design: the implications of rapid prototyping in digital design. Des Stud 27(3):325–355. https://doi.org/10.1016/J.DESTUD.2005.11.009

    Article  Google Scholar 

  • Scheurer F (2010) Materialising complexity. Architectural Des 80(4):86–93. https://doi.org/10.1002/ad.1111

    Article  Google Scholar 

  • Schlaich M (2004) The Messeturm in rostock: a tensegrity tower. J Int Assoc Shell Spatial Struct 42(2):93–98

    Google Scholar 

  • Schumacher P (2011) The autopoiesis of architecture: a new framework for architecture. Wiley, West Sessex

    Google Scholar 

  • Seike K (1986) The art of Japanese Joinery. Weatherhill, Tankosha

    Google Scholar 

  • Self M, Vercruysse E (2017) Infinite variations, radical strategies. In: Menges A, Sheil B, Glynn R, Skavara M (eds) Fabricate 2017 conference proceedings. UCL Press, London, pp 30–35

    Google Scholar 

  • Sheil B (2005) Design through making: an introduction. Architectural Des 75(4):5–12. https://doi.org/10.1002/ad.97

    Article  Google Scholar 

  • Skelton RE, de Oliveira MC (2009) Tensegrity systems. Springer Science & Business Media, London

    MATH  Google Scholar 

  • Skelton RE, Adhikari R, Pinaud JP, Chan W, Helton JW (2002) An introduction to the mechanics of tensegrity structures. In: Proceedings of the 40th IEEE conference on decision and control (Cat. No.01CH37228), vol 5, pp 4254–4259. IEEE, Orlando. https://doi.org/10.1109/CDC.2001.980861

  • Snelson K (1996) Snelson on the tensegrity invention. Int J Space Struct 11(1–2):43–48. https://doi.org/10.1177/026635119601-207

    Article  Google Scholar 

  • Snelson K (2012) The art of tensegrity. Int J Space Struct 27(2–3):71–80. https://doi.org/10.1260/0266-3511.27.2-3.71

    Article  Google Scholar 

  • Solomon J, Vouga E, Wardetzky M, Grinspun E (2012) Flexible developable surfaces. Comput Graph Forum 31(5):1567–1576. https://doi.org/10.1111/j.1467-8659.2012.03162.x

    Article  Google Scholar 

  • Son S, Fitriani H, Kim JT, Go S, Kim S (2017) Mathematical algorithms of patterns for free-form panels. In: Proceedings of the 2nd world congress on civil, structural, and environmental engineering (CSEE’17), vol 101, pp 2371–5294. CSENM,Barcelona. https://doi.org/10.11159/icsenm17.101

  • Song K, Yeom E, Seo S-J, Kim K, Kim H, Lim J-H, Joon Lee S (2015) Journey of water in pine cones. Sci Rep 5(1):9963. https://doi.org/10.1038/srep09963

    Article  Google Scholar 

  • Stephan S, Klimke H (2004) The making of a tensegrity tower. In: IASS 2004 symposium, international association for shell and spatial structures. Editions de l’Espérou, Montpellier

    Google Scholar 

  • Svilans T, Poinet P, Tamke M, Ramsgaard Thomsen M (2018) A multi-scalar approach for the modelling and fabrication of free-form glue-laminated timber structures. In: Humanizing digital reality. Springer, Singapore, pp 247–257. https://doi.org/10.1007/978-981-10-6611-5_22

  • Tachi T (2012) Interactive freeform design of tensegrity. In: Hesselgren L, Sharma S, Wallner J, Baldassini N, Bompas P, Raynaud J (eds) Proceedings of the advances in architectural geometry conference. Springer, Wien, pp 259–268. https://doi.org/10.1007/978-3-7091-1251-9

  • Tamborero L (2006) The “Vis Saint-Gilles”, symbol of compromise between practice and science. In: Proceedings of the second international congress on construction history. Construction History Society, Cambridge, pp 3025–3040

    Google Scholar 

  • Tamke M, Thomsen MR (2009) Digital wood craft. CAAD Futures

    Google Scholar 

  • Teghtsoonian M (1965) The judgment of size. Am J Psychol 78(3):392. https://doi.org/10.2307/1420573

    Article  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Thönnissen U (2014) A form-finding instrument for reciprocal structures. Nexus Netw J 16(1):89–107. https://doi.org/10.1007/s00004-014-0172-1

    Article  MATH  Google Scholar 

  • Thönnissen U, Werenfels N (2011) Reciprocal frames—teaching experiences. Int J Space Struct 26(4):369–371. https://doi.org/10.1260/0266-3511.26.4.369

    Article  Google Scholar 

  • Tibert G (2008) Advances in the optimization and form-finding of tensegrity structures. In: Proceedings of the 6th international conference on computation of shell & spatial structures. Internet-First University Press, Stockholm

    Google Scholar 

  • Tibert AG, Pellegrino S (2011) Review of form-finding methods for tensegrity structures. Int J Space Struct 26(3):241–255. https://doi.org/10.1260/0266-3511.26.3.241

  • Tran TM (2002) Reverse displacement analysis for tensegrity structures. University of Florida. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.2315&rep=rep1&type=pdf

  • Trevisan C (2011) Per la storia della stereotomia: geometrie, metodi e construzioni. Aracne, Roma

    Google Scholar 

  • Tsigkari M, Angelos C, Joyce SC, Davis A, Feng S, Aish F (2013) Integrated design in the simulation process. In: Proceedings of the symposium on simulation for architecture & urban design. Society for Computer Simulation International, San Diego

    Google Scholar 

  • Turan M (2009) Reconstructing the balloon frame: a study in the history of architectonics. METU J 2(26):175–209. https://doi.org/10.4305/METU.JFA.2009.2.10

    Article  Google Scholar 

  • Turrin M, von Buelow P, Stouffs R (2011) Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Adv Eng Inform 25(4):656–675. https://doi.org/10.1016/J.AEI.2011.07.009

    Article  Google Scholar 

  • Ugolev BN (2014) Wood as a natural smart material. Wood Sci Technol 48(3):553–568. https://doi.org/10.1007/s00226-013-0611-2

    Article  Google Scholar 

  • Vailati C, Bachtiar E, Hass P, Burgert I, Rüggeberg M (2018) An autonomous shading system based on coupled wood bilayer elements. Energy Build 158:1013–1022. https://doi.org/10.1016/J.ENBUILD.2017.10.042

    Article  Google Scholar 

  • Van Telgen MV, Snijder H, Habraken APH, Beetz J (2013) Parametric design and calculation of circular and elliptical tensegrity domes. In: IASS 2013 Wroclaw: ‘Beyond the Limits of Man’—structural morphology. International Association for Shell and Spatial Structures (IASS), Eindhoven, pp 1–8

    Google Scholar 

  • Vassart N, Motro R (1999) Multiparametered formfinding method: application to tensegrity systems. Int J Space Struct 14(2):147–154. https://doi.org/10.1260/0266351991494768

    Article  Google Scholar 

  • Vattam S, Helms ME, Goel AK (2007) Biologically-inspired innovation in engineering design: a cognitive study, Atlanta. Retrieved from http://hdl.handle.net/1853/14346

  • Vierlinger R (2013) A framework for flexible search and optimization in parametric design. In: Rethinking prototyping—proceedings of the design modelling symposium. Berlin. Retrieved from https://www.researchgate.net/profile/Robert_Vierlinger/publication/283073197_A_Framework_for_Flexible_Search_and_Optimization_in_Parametric_Design/links/5628c83308ae04c2aeaeb6cb.pdf

  • Vierlinger R (2015) Towards ai drawing agents. In: Ramsgaard Thomsen M, Tamke M, Gengnagel F, Faircloth C, Scheurer B (eds) Modelling behaviour. Springer International Publishing, Cham, pp 357–369. https://doi.org/10.1007/978-3-319-24208-8_30

  • Vierlinger R, Bollinger K (2014) Accommodating change in parametric design. In: Proceedings of ACADIA 2014. Association for Computer-Aided Design in Architecture, Los Angeles

    Google Scholar 

  • Vierlinger R, Zimmel C (2015) Octopus. Retrieved 27 Aug 2018, from https://www.grasshopper3d.com/group/octopus?groupUrl=octopus&id=2985220%3AGroup%3A742529&page=3

  • Vincent J (2009) Biomimetic patterns in architectural design. Architectural Des 79(6):74–81. https://doi.org/10.1002/ad.982

    Article  Google Scholar 

  • Vogel JM, Teghtsoonian M (1972) The effects of perspective alterations on apparent size and distance scales. Percept Psychophys 11(4):294–298. https://doi.org/10.3758/BF03210382

    Article  Google Scholar 

  • Wang B (2004) Free-standing tension structures: from tensegrity systems to cable-strut systems. Spon Press

    Google Scholar 

  • Weber S (2005) The success of open source. Harvard University Press, Cambridge

    Google Scholar 

  • Weinand Y (2016) Advanced timber structures: architectural designs and digital dimensioning. Birkhäuser, Basel

    Google Scholar 

  • Wester T (2002) Nature teaching structures. Int J Space Struct 17(2–3):135–147. https://doi.org/10.1260/026635102320321789

    Article  Google Scholar 

  • Wikipedia (2015) The poverty of historicism (2002nd ed.). Routledge, London

    Google Scholar 

  • Willis D, Woodward T (2010) Diminishing difficulty: mass customisation and the digital production of architecture. In Corser R (ed) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, pp 184–208

    Google Scholar 

  • Willmann J, Gramazio F, Kohler M (2017) New paradigms of the automatic: robotic timber construction in architecture. In: Menges A, Schwinn T, Krieg OD (eds) Advancing wood architecture. A computational approach. Routledge, London, pp 13–28. https://doi.org/10.4324/9781315678825-11

  • Wood DM, Correa D, Krieg OD, Menges A (2016) Material computation—4D timber construction: towards building-scale hygroscopic actuated, self-constructing timber surfaces. Int J Architectural Comput 14(1):49–62. https://doi.org/10.1177/1478077115625522

    Article  Google Scholar 

  • Wood D, Vailati C, Menges A, Rüggeberg M (2018) Hygroscopically actuated wood elements for weather responsive and self-forming building parts—facilitating upscaling and complex shape changes. Constr Build Mater 165:782–791. https://doi.org/10.1016/J.CONBUILDMAT.2017.12.134

    Article  Google Scholar 

  • Woodbury R (2010) Elements of parametric design. Routledge, London

    Google Scholar 

  • Zarrinmehr S, Akleman E, Ettehad M, Kalantar N, Borhani A (2017) Kerfing with generalized 2D meander-patterns: conversion of planar rigid panels into locally-flexible panels with stiffness control. In: Çagdas G, Özkar M, Gül LF, Gürer E (eds) Future Trajectories of computation in design. Cenkler Matbaa, Istanbul, pp 276–293

    Google Scholar 

  • Zhang L, Maurin B, Motro R (2006) Form-finding of nonregular tensegrity systems. J Struct Eng 132(9):1435–1440. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1435)

    Article  Google Scholar 

  • Zipkin P (2001) The limits of mass customization. MIT Sloan Manag Rev 42(3):81–87. https://doi.org/ISSN: 1532-9194

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L, Zitzler E (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Zurigo. https://doi.org/10.3929/ethz-a-004284029

  • Zwerger K (1997) Wood and wood joints: building traditions of Europe, Japan and China. Birkhäuser, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Filippucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianconi, F., Filippucci, M. (2019). WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture. In: Bianconi, F., Filippucci, M. (eds) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-03676-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03676-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03675-1

  • Online ISBN: 978-3-030-03676-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics