Advertisement

WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture

  • Fabio Bianconi
  • Marco FilippucciEmail author
Chapter
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 24)

Abstract

The contemporary development and digital culture in architecture, from the idea to the realization, lead to a rewriting of the coordinates of the deep relation between model and pre-figuration, especially in the timber structure field. Artificial intelligence opened new potentialities that rewrite the project paths through the evaluation of computational design, with a model set as the place of simulation and experimentation, in order to locate solutions for more and more high requests made by architecture. Wood’s natural intelligence inspires artificial intelligence’s principles, and it is projected as the new frontier of the research, in its possibility of defying optimized solutions also in function of multiples objectives and parameters. Wooden architecture design correlated to a history of tradition, which is established on descriptive geometry, finds today multiple application fields for the research. In this sense, representation supports the knowledge and the innovation, able to continue and express its operative aspect full of culture and, at the same time, its tecné sense, which etymologically it is meant as art and technique. The present chapter shows different ways to apply the contemporary principle of descriptive geometry in digital wood design research, in a multidisciplinary and contaminated learning environment. In all the illustrated cases, the generative design has a central role, in an integration addressed to the need of optimization of architectural form, using Genetic algorithms in order to analyze and to understand the relationship between form, geometry, and construction.

Keywords

Representation Generative design Artificial Intelligent 

References

  1. Abdelmohsen S, Massoud P, Elshafei A (2016) Using tensegrity and folding to generate soft responsive architectural skins. In: Proceedings of the 34th eCAADe conference of complexity & simplicity. Oulu, pp 529–536Google Scholar
  2. Accolti P (1625) Lo inganno de gl’occhi, prospettiva pratica de Pietro Accolti. Pietro Cecconcelli, FlorenceGoogle Scholar
  3. Addington M, Schodek DL (2005) Smart materials and new technologies: for the architecture and design professions. Architectural, OxfordGoogle Scholar
  4. Adriaenssens S, Barnes M (2001) Tensegrity spline beam and grid shell structures. Eng Struct 23(1):29–36.  https://doi.org/10.1016/S0141-0296(00)00019-5CrossRefGoogle Scholar
  5. Adriaenssens S, Block P, Veenendaal D, Williams C (2014) Shell structures for architecture: form finding and optimization. Routledge, New YorkGoogle Scholar
  6. Aish R, Woodbury R (2005) Multi-level interaction in parametric design. In: Smart graphics. Springer, Berlin, Heidelberg, pp 151–162.  https://doi.org/10.1007/11536482_13Google Scholar
  7. Ames A, Ittelson WH (1952) The Ames demonstrations in perception. Hafner Publishing, New YorkGoogle Scholar
  8. Anderson DM (2002) Build-to-order and mass customization: the ultimate supply chain management and lean manufacturing strategy for low-cost on-demand production without forecasts or inventory. CIM Press, CambriaGoogle Scholar
  9. Andia A, Spiegelhalter T (eds) (2017) Post-parametric automation in design and construction. Artech House, BostonGoogle Scholar
  10. Arnheim R (1978) Brunelleschi’s Peepshow. Zeitschrift Für Kunstgeschichte 41(1): 57.  https://doi.org/10.2307/1481995Google Scholar
  11. Arnheim R (1986) New essays on the psychology of art. University of California Press, BerkeleyGoogle Scholar
  12. Asl MR, Bergin M, Menter A, Yan W (2014) BIM-based parametric building energy performance multi-objective optimization. In: Fusion—proceedings of the 32nd eCAADe conference. eCAADe, Newcastle, pp 455–464Google Scholar
  13. Austern G, Capeluto IG, Grobman YJ (2018) Rationalization methods in computer aided fabrication: a critical review. Automation in Construction 90:281–293.  https://doi.org/10.1016/J.AUTCON.2017.12.027CrossRefGoogle Scholar
  14. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76.  https://doi.org/10.1162/EVCO_a_00009CrossRefGoogle Scholar
  15. Bar-Cohen Y (ed) (2016) Biomimetics nature-based innovation. CRC Press, Boca RatonGoogle Scholar
  16. Barnekov VG, McMillin CW, Huber HA (1986) Factors influencing laser cutting of wood. For Prod J 1(36):55–58Google Scholar
  17. Barthel R (1967) Natural forms-architectural forms. In: Nerdinger W (ed) Frei Otto complete works. Birkhäuser, Basel-Boston-Berlin, Architecture, pp 16–32Google Scholar
  18. Baudrillard J (1981) Simulacres et simulation. Galilée, ParisGoogle Scholar
  19. Baverel O, Larsen OP (2011) A review of woven structures with focus on reciprocal systems—Nexorades. Int J Space Struct 26(4):281–288.  https://doi.org/10.1260/0266-3511.26.4.281CrossRefGoogle Scholar
  20. Baverel O, Pugnale A (2014) Reciprocal systems based on planar elements: morphology and design explorations. Nexus Netw J 1(16):179–189Google Scholar
  21. Bechert S, Knippers J, Krieg OD, Menges A, Schwinn T, Sonntag D (2016) Textile fabrication techniques for timber shells elastic bending of custom-laminated veneer for segmented shell construction systems. In: Adriaenssens S, Gramazio F, Kohler M, Menges A, Pauly M (eds) Advances in architectural geometry 2016. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, pp 154–170Google Scholar
  22. Benros D, Duarte JP (2009) An integrated system for providing mass customized housing. Autom Constr 18(3):310–320.  https://doi.org/10.1016/J.AUTCON.2008.09.006CrossRefGoogle Scholar
  23. Benyus JM (1997) Biomimicry: innovation inspired by nature. Harper Perennial, New YorkGoogle Scholar
  24. Bergin M, Steinfeld K (2012) Housing agency system (HAS): multi-criteria satisfying and mass-customization of homes. In: ACSA fall conference. OFFSITE, Philadelphia, pp 93–97Google Scholar
  25. Bergmann E, Hildebrand S (2015) Form-finding, form-shaping, designing architecture. Mendrisio Academy Press, MendrisioGoogle Scholar
  26. Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans: Series A, Mathematical, Physical, and Engineering Sciences 367(1893):1445–1486.  https://doi.org/10.1098/rsta.2009.0011CrossRefGoogle Scholar
  27. Bianconi F (2002) Tetraktis. Strumenti, luoghi, materia, rilievo. Digital Point, PerugiaGoogle Scholar
  28. Bianconi F (2005) Segni digitali. Morlacchi, PerugiaGoogle Scholar
  29. Bianconi F, Filippucci M (2015) The dams of Rio Grande’s basin (Amelia TR). In: Gambardella C (ed) XIII Forum Internazionale Le Vie dei Mercanti. Heritage and technology mind knowledge experience, vol 1. La scuola di Pitagora, Napoli, pp 1864–1875Google Scholar
  30. Bianconi F, Filippucci M (2016a) Generative education: thinking by modeling/modeling by thinking. In: EGA. Congreso: XVI Congreso Internacional de Expresión Gráfica Arquitectónica “El arquitecto, de la tradición al siglo XXI”, vol 1. Grupo Enlace Gráfico, pp 747–754Google Scholar
  31. Bianconi F, Filippucci M (2016b) The parameterization of complex surfaces for engineering solutions. In: Le ragioni del Disegno/the reasons of drawing, vol 1. Gangemi, pp 125–130Google Scholar
  32. Bianconi F, Verducci P, Filippucci M (2006) Architetture dal Giappone: disegno, progetto e tecnica, vol 1. Gangemi, RomaGoogle Scholar
  33. Bianconi F, Filippucci M, Andreani S (2016a) Computational design and built environments. In: 3D printing: breakthroughs in research and practice, vol 1. IGI Global, Hershey (Pennsylvania, USA), pp. 361–395Google Scholar
  34. Bianconi F, Filippucci M, Verdecchia C (2016b) Body movement based architecture. In: Visual computing and emerging geometrical design tools, vol 2. IGI Global, Hershey (Pennsylvania, USA), pp 744–770.  https://doi.org/10.4018/978-1-5225-0029-2.ch030Google Scholar
  35. Bianconi F, Catalucci S, Filippucci M, Marsili R, Moretti M, Rossi G, Speranzini E (2017a) Comparison between two non-contact techniques for art digitalization. J Phys Conf Ser 882.  https://doi.org/10.1088/1742-6596/882/1/012005Google Scholar
  36. Bianconi F, Filippucci M, Catalucci S (2017b) Line and Points. Critical analysis of evolution of archaeological survey in forty years of experiences in Umbria. DISEGNARECON 10(19): 4–1–E4.20Google Scholar
  37. Bianconi F, Filippucci M, Catalucci S (2017c) The identity landscape in the cataloging of scattered assets in the area of Amelia. In: Putting tradition into practice: heritage, place and design. Proceedings of 5th INTBAU international annual event. Springer, pp 984–993Google Scholar
  38. Bianconi F, Filippucci M, Buffi A, Calabro’ MP (2017d) The value of image. The design of and data streams from the perception by design. In: Proceedings 2017. International and interdisciplinary conference IMMAGINI? Image and imagination between representation, communication, education and psychology. MDPI.  https://doi.org/10.3390/proceedings1090933Google Scholar
  39. Bianconi F, Filippucci M, Ciarapica A (2017e) Landscape, territory, knowledge. From Umbria region’s atlas of objectives to the “Landscape Contracts” of Trasimeno Lake. In Crisis landscapes: opportunities and weaknesses for a sustainable development. FrancoAngeli, Roma, pp 87–110Google Scholar
  40. Bianconi F, Filippucci M, Clemente M, Salvati L (2017f) Green infrastructures and biodiverse urban gardens for regenerating urban spaces. In: Gospodini A (ed) Book of abstracts of the international conference on changing cities III spatial, design, landscape; socio-economic dimensions: 26–30 June 2017, Syros, Delos, Mykonos Islands, Greece. Grafima Publications, Thessaloniki, pp 42–42Google Scholar
  41. Bianconi F, Filippucci M, Margutti M, Stramaccia M (2017g) Evoluzioni morfologiche di transpoliedri. Eloquenza delle immagini per generare strutture tensegrali Morphological evolutions of transpolyhedra. Eloquence of the images to generate tensegrity structures XY(3):4–15Google Scholar
  42. Bianconi F, Filippucci M, Margutti M, Stramaccia M (2018) Drawing Tensegrity, discover trans-polyhedra. In: D’Uva D (ed) Analyzing form and morphogenesis in modern architectural contexts. New York: IGI Global, pp 41–68 https://doi.org/10.4018/978-1-5225-3993-3.ch003
  43. Bianconi F, Clemente M, Filippucci M, Salvati L (2018a) Re-sewing the urban periphery. A green strategy for Fontivegge District in Perugia. TEMA 11: 107–118Google Scholar
  44. Bianconi F, Filippucci M, Ciculi L (2018b) The form of music: experiments between cymatics and engineering. In Nexus 2018 architecture and mathematics conference book. Kim Williams Book, pp 233–244Google Scholar
  45. Bianconi F, Filippucci M, Clemente M, Salvati L (2018c) Regenerating urban spaces under place-specific social contexts: a brief commentary on green infrastructures for landscape conservation. Int J Soc Sci 2:18–32.  https://doi.org/10.20472/SS.2017.6.2.002
  46. Bianconi F, Filippucci M, Margutti M, Stramaccia M (2018d) Drawing tensegrity, discover trans-polyhedra. In D’Uva D (ed) Analyzing form and morphogenesis in modern architectural contexts. IGI Global, New York, pp 41–68.  https://doi.org/10.4018/978-1-5225-3993-3.ch003
  47. Bianconi F, Filippucci M, Seccaroni M (2018e) Drawing architectonic choices. Representation and optimization in design pathway. In: De-sign environment landscape city. Genova University Press, Genova, p 47 Google Scholar
  48. Bianconi F, Filippucci M, Seccaroni M (2018f) Rappresentazione e variazione della forma architettonica per l’ottimizzazione emergetica ed energetica. In: 18th CIRIAF national congress sustainable development, human health and environmental protection. Perugia, p Cod_018Google Scholar
  49. Bidgoli A, Cardoso-Llach D (2015) Towards a motion grammar for robotic stereotomy. In: Ikeda Y, Herr CM, Holzer D, Kaijima S, Kim MJ (eds) Emerging experience in past, present and future of digital architecture. The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong, pp 723–732Google Scholar
  50. Bittermann MS (2009) Intelligent design objects (IDO): a cognitive approach for performance-based design. www.boekenbent.com
  51. Blessing WW, Landauer AA, Coltheart M (1967) The effect of false perspective cues on distance- and size-judgments: an examination of the invariance hypothesis. Am J Psychol 80(2):250.  https://doi.org/10.2307/1420984CrossRefGoogle Scholar
  52. Block P, Rippmann M, Van Mele T, Escobedo D (2017) The Armadillo Vault: balancing computation and traditional craft. In: Menges A, Sheil B, Glinn T, Skavara M (eds) Fabricate 2017: rethinking design and construction. UCL Press, London, pp 286–293Google Scholar
  53. Bolles RC, Bailey DE (1956) Importance of object recognition in size constancy. J Exp Psychol 51(3):222–225.  https://doi.org/10.1037/h0048080CrossRefGoogle Scholar
  54. Bosse A (1643a) La pratique du trait à preuves, de Mr Desargues Lyonnois, pour la coupe des pierres en l’architecture. Impr. Des-HayesGoogle Scholar
  55. Bosse A (1643b) La pratique du trait à preuves de Mr Desargues,… pour la coupe des pierres … Impr. Des-HayesGoogle Scholar
  56. Bouzanjani BF, Leach N, Huang A, Fox M, Pomona CP (2013) Alloplastic architecture: the design of an interactive tensegrity structure. In: Beesley P, Khan O, Stacey M (eds) Adaptive architecture: ACADIA 2013. Riverside Architectural Press, Toronto, pp 129–136Google Scholar
  57. Brown A (2014) The genius of Japanese carpentry: the secrets of a craft. Tuttle Publishing, ClarendonGoogle Scholar
  58. Brown NC, Mueller CT (2016) Design for structural and energy performance of long span buildings using geometric multi-objective optimization. Energy Build 127:748–761.  https://doi.org/10.1016/J.ENBUILD.2016.05.090CrossRefGoogle Scholar
  59. Brown N, Mueller C (2017) Designing with data: moving beyond the design space catalog. Acadia 2017 Discipline + Distruption. MIT Press, Cambridge, pp 154–163Google Scholar
  60. Bruce J, Caluwaerts K, Iscen A, Sabelhaus AP, SunSpiral V (2014) Design and evolution of a modular tensegrity robot platform. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3483–3489.  https://doi.org/10.1109/ICRA.2014.6907361
  61. Brusati C (1995) Artifice and illusion: the art and writing of Samuel van Hoogstraten. University of Chicago Press, ChicagoGoogle Scholar
  62. Buckminster Fuller R (1961) Tensegrity. Portfolio Artnews Ann 4:112–127Google Scholar
  63. Buckminster Fuller R (1975) Synergetics: explorations in the geometry of thinking. Macmillan Publishing, BasingstokeGoogle Scholar
  64. Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans. Series A, Mathematical, Physical, and Engineering Sciences 367(1893):1541–1557.  https://doi.org/10.1098/rsta.2009.0003CrossRefGoogle Scholar
  65. Burkhardt RW (2008) A practical guide to tensegrity design. CambridgeGoogle Scholar
  66. Burry M (2014) From descriptive geometry to smartgeometry: first steps towards digital architecture. In: Peters B, Peters T (eds) Inside smartgeometry. Wiley, Chichester, West Sussex, United Kingdom, pp 154–165.  https://doi.org/10.1002/9781118653074.ch13CrossRefGoogle Scholar
  67. Calladine CR (1978) Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. Int J Solids Struct 14(2):161–172.  https://doi.org/10.1016/0020-7683(78)90052-5CrossRefzbMATHGoogle Scholar
  68. Castronova E (2007) Universi sintetici: come le comunità online stanno cambiando la società e l’economia. Mondadori, MilanGoogle Scholar
  69. Cefalo M, Mirats Tur JM (2010) Real-time self-collision detection algorithms for tensegrity systems. Int J Solids Struct 47(13):1711–1722.  https://doi.org/10.1016/J.IJSOLSTR.2010.03.010CrossRefzbMATHGoogle Scholar
  70. Chandana P, Lipson H, Cuevas FJV (2005) Evolutionary form-finding of tensegrity structures. In Proceedings of the 2005 conference on genetic and evolutionary computation—GECCO’05. ACM Press, New York, New York, USA, p 3.  https://doi.org/10.1145/1068009.1068011
  71. Chaszar A, Glymph J (2010) CAD/CAM in the business of architecture, engineering and construction. In: Corser R (ed) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, Princeton, pp 86–93Google Scholar
  72. Chen L, Sass L (2017) Generative computer-aided design: multi-modality large-scale direct physical production. Comput Aided Des Appl 14(1):83–94.  https://doi.org/10.1080/16864360.2016.1199758CrossRefGoogle Scholar
  73. Chilton JC, Tang G (2016) Timber gridshells: architecture, structure and craft. Routledge, LondonGoogle Scholar
  74. Clune J, Lipson H (2011) Evolving three-dimensional objects with a generative encoding inspired by developmental biology motivation and previous work. Eur Conf Artif Life. MIT Press, Cambridge, pp 144–148Google Scholar
  75. Connelly R, Back A (1998) Mathematics and tensegrity. Am Sci 86:142–151.  https://doi.org/10.2307/27856980CrossRefGoogle Scholar
  76. Connelly R, Whiteley W (1992) The stability of tensegrity frameworks. Int J Space Struct 7(2):153–163.  https://doi.org/10.1177/026635119200700208CrossRefGoogle Scholar
  77. Cornish V (1935) Scenery and the sense of sight. University Press, CambridgeGoogle Scholar
  78. Correa D, Papadopoulou A, Guberan C, Jhaveri N, Reichert S, Menges A, Tibbits S (2015) 3D-printed wood: programming hygroscopic material transformations. 3D Printing Addit Manuf 2(3):106–116.  https://doi.org/10.1089/3dp.2015.0022Google Scholar
  79. Corser R (2010) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, PrincetonGoogle Scholar
  80. Couldry N, Powell A (2014) Big data from the bottom up. Big Data Soc 1(2).  https://doi.org/10.1177/2053951714539277Google Scholar
  81. Cully A, Clune J, Tarapore D, Mouret J-B (2015) Robots that can adapt like animals. Nature 521:503–507.  https://doi.org/10.1038/nature14422CrossRefGoogle Scholar
  82. Cz P (1896) Handbuch der physiologischen Optik. Monatshefte Für Mathematik Und Physik.  https://doi.org/10.1007/BF01708548MathSciNetGoogle Scholar
  83. d’Estrée Sterk T (2003) Using actuated tensegrity structures to produce a responsive architecture. In: Klinger KR (ed) Crossroads of digital discourse. Ball State University, pp 85–93Google Scholar
  84. Dangel U (2016) Turning point in timber construction: a new economy. Birkhäuser, BasileaGoogle Scholar
  85. Davis J, Edgar T, Porter J, Bernaden J, Sarli M (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47:145–156.  https://doi.org/10.1016/J.COMPCHEMENG.2012.06.037CrossRefGoogle Scholar
  86. Dawson C, Vincent JFV, Rocca A-M (1997) How pine cones open. Nature 390(6661):668.  https://doi.org/10.1038/37745CrossRefGoogle Scholar
  87. De Azambuja Varela P, Sousa JP (2016) Revising stereotomy through digital technology. In: Herneoja A, Österlund T, Markkanen P (eds) Complexity & simplicity—proceedings of the 34th eCAADe conference. University of Oulu, Oulu, pp 427–434Google Scholar
  88. De L’Orme P (1568) Le premier tome de l’architecture. Fédéric Morel, ParisGoogle Scholar
  89. De La Hire P (1596) Traité de la coupe des pierres. Bibliothèque de l’Institut de France, ParisGoogle Scholar
  90. de Rubertis R (2012) Piramide visiva. Retrieved 28 Aug 2018 from http://www.wikitecnica.com/piramide-visiva/
  91. de Wit MM, van der Kamp J, Withagen R (2015) Visual illusions and direct perception: elaborating on Gibson’s insights. New Ideas Psychol 36:1–9.  https://doi.org/10.1016/J.NEWIDEAPSYCH.2014.07.001CrossRefGoogle Scholar
  92. Debray R (1994) Vie et mort de l’image une histoire du regard en Occident. Gallimard, ParisGoogle Scholar
  93. Deleuze, G. (1994). Difference and repetition. Columbia University PressGoogle Scholar
  94. Deleuze G, Guattari F (1987) A thousand plateaus: capitalism and schizophrenia. University of Minnesota PressGoogle Scholar
  95. Dellaert BGC, Stremersch S (2005) Marketing mass-customized products: striking a balance between utility and complexity. J Mark Res 42(2):219–227.  https://doi.org/10.1509/jmkr.42.2.219.62293CrossRefGoogle Scholar
  96. Desarguer G (1640) Brouillon project d’exemples d’une manière universelle du sieur G.D.L., touchant la pratique du trait à preuve pour la coupe des pierres en architecture …. Melchor Tavernier, ParisGoogle Scholar
  97. Di Carlo B (2008) The wooden roofs of leonardo and new structural research. Nexus Netw J 10(1):27–38.  https://doi.org/10.1007/s00004-007-0054-xMathSciNetCrossRefGoogle Scholar
  98. Dogra JK, Kaur B, Parsarokh A (2015) tensegri[city]. ELISAVA, BarcellonaGoogle Scholar
  99. Duarte JP (2005) A discursive grammar for customizing mass housing: the case of Siza’s houses at Malagueira. Autom Constr 14(2):265–275.  https://doi.org/10.1016/J.AUTCON.2004.07.013CrossRefGoogle Scholar
  100. Duray R, Ward PT, Milligan GW, Berry WL (2000) Approaches to mass customization: configurations and empirical validation. J Oper Manag 18(6):605–625.  https://doi.org/10.1016/S0272-6963(00)00043-7CrossRefGoogle Scholar
  101. Duro-Royo J, Oxman N (2015) Towards fabrication information modeling (FIM): four case models to derive designs informed by multi-scale trans-disciplinary data. MRS Proceedings, 1800.  https://doi.org/10.1557/opl.2015.647
  102. Eastman CM (2011) BIM handbook: a guide to building information modeling for owners, managers, designers, engineers and contractors. Wiley, Hoboken. Retrieved from https://books.google.it/books?id=aCi7Ozwkoj0C&dq=Eastman,+C.+(2011+BIM+handbook:+a+guide+to+building+information+modeling+for+owners,+managers,+designers,+engineers,+and+contractors&hl=it&source=gbs_navlinks_s
  103. Eastman C, Lee J, Jeong Y, Lee J (2009) Automatic rule-based checking of building designs. Autom Constr 18(8):1011–1033.  https://doi.org/10.1016/J.AUTCON.2009.07.002CrossRefGoogle Scholar
  104. Elkins J (1994) The poetics of perspective. Cornell University Press, LondonGoogle Scholar
  105. Emmerich DG (1988) Structures tendues et autotendantes Monographies de géometrie constructive. Editions de la La Villette, ParisGoogle Scholar
  106. Emmerich DG (1996) Emmerich on self-tensioning structures. Int J Space Struct 11(1–2):29–36.  https://doi.org/10.1177/026635119601-205CrossRefGoogle Scholar
  107. Epstein W, Park J, Casey A (1961) The current status of the size-distance hypotheses. Psychol Bull 58(6):491–514.  https://doi.org/10.1037/h0042260CrossRefGoogle Scholar
  108. Evans R (1995) The projective cast: architecture and its three geometries. MIT Press, CambridgeGoogle Scholar
  109. Eversmann P, Gramazio F, Kohler M (2017) Robotic prefabrication of timber structures: towards automated large-scale spatial assembly. Constr Rob 1(1–4):49–60.  https://doi.org/10.1007/s41693-017-0006-2CrossRefGoogle Scholar
  110. Eigensatz M, Kilian M, Schiftner A, Mitra NJ, Pottmann H, Pauly M, et al. (2010) Paneling architectural freeform surfaces. In: ACM transactions on graphics. Proceedings of ACM SIGGRAPH, vol 29. ACM Press, New York, p 1.  https://doi.org/10.1145/1833349.1778782
  111. Fagerström G (2009) Dynamic relaxation of tensegrity structures. In: Proceedings of the 14th international conference on computer aided architectural design research in Asia/Yunlin (Taiwan) 22–25 Apr 2009. CAADRIA, Taiwan, pp 553–562 (pp 553–562)Google Scholar
  112. Fallacara G (2006) Digital stereotomy and topological transformations: reasoning about shape building. In: Proceedings of second international congress construction history. Queen’s College Cambridge, Cambridge, pp 1075–1092Google Scholar
  113. Fallacara G (2007) Verso una progettazione stereotomica: nozioni di stereotomia, stereotomia digitale e trasformazioni topologiche : ragionamenti intorno alla costruzione della forma. Aracne, RomaGoogle Scholar
  114. Fernando S, Saunders R, Weir S (2015). Surveying stereotomy: investigations in arches, vaults and digital stone masonry. In: Architectural Research Centers Consortium (ed) ARCC 2015 conference—the future of architectural research. Perkins + Will, pp 82–89Google Scholar
  115. Field JV (1987) Linear perspective and the projective geometry of Girard Desargues. Nuncius 2(2):3–40.  https://doi.org/10.1163/182539187X00015MathSciNetCrossRefGoogle Scholar
  116. Filippucci M (2010a) Nuvole di pixel. La fotomodellazione con software liberi per il rilievo d’architettura. DISEGNARE CON…, 3:50–63.  https://doi.org/10.6092/issn.1828-5961/2081
  117. Filippucci M (2010b) Virtual in virtual, discretization in discretization. Shape and perception in parametric modelling for renewing descriptive geometry. In: Proceedings of ICGG 2010 14TH international conference on geometry and graphics. Naomi Ando et al, pp 129–130Google Scholar
  118. Filippucci M (2010c) Virtual in virtual, discretization in discretization. Shape and perception in parametric modelling for renewing descriptive geometry. In: Ando N et al (ed) Proceedings of ICGG 2010 14TH international conference on geometry and graphics. Kyoto, pp 129–130Google Scholar
  119. Filippucci M (2012a) Dalla forma urbana all’immagine della città. Percezione e figurazione all’origine dello spazio costruito. Sapienza Università di RomaGoogle Scholar
  120. Filippucci M (2012b) Rappresentazione al quadrato. Il disegno generativo per il rinnovamento della geometria descrittiva. In: Carlevalis L, De Carlo L, Migliari R (eds) Attualità della Geometria Descrittiva Seminario nazionale sul rinnovamento della Geometria descrittiva, Roma dicembre 2009, marzo 2010. Gangemi, RomeGoogle Scholar
  121. Filippucci M (2015) Primitive Urbane. Analisi interpretativa dei processi figurativi dell’immagine della città. In: Novello G, Marotta A (eds). Gangemi edizioni, Torino, p 1219Google Scholar
  122. Filippucci M, Bianconi F, Andreani S (2016a) Computational design and built environments: the quest for an alternative role of the digital in architecture. 3D printing: breakthroughs in research and practice.  https://doi.org/10.4018/978-1-5225-1677-4.ch019Google Scholar
  123. Filippucci M, Rinchi G, Brunori A, Nasini L, Regni L, Proietti P (2016b) Architectural modelling of an olive tree. Generative tools for the scientific visualization of morphology and radiation relationships. Ecol Inf 36.  https://doi.org/10.1016/j.ecoinf.2016.09.004Google Scholar
  124. Filippucci M, Bianconi F, Bettollini E, Meschini M, Seccaroni M (2017) Survey and representation for rural landscape. New tools for new strategies: the example of Campello Sul Clitunno. In: Proceedings 2017. International and interdisciplinary conference IMMAGINI? Image and imagination between representation, communication, education and psychology, vol 1. MDPI, Bressanone, p 934.  https://doi.org/10.3390/proceedings1090934Google Scholar
  125. Filippucci M, Bianconi F, Bettollini E, Meschini M (2018) Visual perception analysis for landscape evaluation. an experimental case, Campello Sul Clitunno. De_Sign Environment Landscape City, vol p. Genova University Press, Genova, p 113Google Scholar
  126. Floreano D, Mattiussi C (2009) Bio-inspired artificial intelligence: theories, methods, and technologies. Scalable Comput Pract Exp 10(4).  https://doi.org/10.12694/scpe.v10i4.623
  127. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, OxfordzbMATHGoogle Scholar
  128. Frézier AF (1737a) La théorie et la pratique de la coupe des pierres et des bois pour la construction des voûtes et autres parties des bâtiments civils, militaires, ou Traité de stéréotomie, à l’usage de l’architecture. Tome 3 /, par M. Frézier,… Paris: L.H. GuerinGoogle Scholar
  129. Frézier AF (1737b) La théorie et la pratique de la coupe des pierres et des bois pour la construction des voûtes et autres parties des bâtiments civils; militaires, ou Traité de stéréotomie, à l’usage de l’architecture. Tome 3 /, par M. Frézier,… Paris: L.H. GuerinGoogle Scholar
  130. Frézier AF (1760) Élémens de stéréotomie, à l’usage de l’architecture, pour la coupe des pierres. Jombert, ParisGoogle Scholar
  131. Fuller RB (1963) Ideas and integrities. Macmillan, New YorkGoogle Scholar
  132. Gehringer WL, Engel E (1986) Effect of ecological viewing conditions on the Ames’ distorted room illusion. J Exp Psychol Hum Percept Perform 12(2):181–185Google Scholar
  133. Gherardini F, Leali F (2017) Reciprocal frames in temporary structures: an aesthetical and parametric investigation. Nexus Netw J 19(3):741–762.  https://doi.org/10.1007/s00004-017-0352-xCrossRefGoogle Scholar
  134. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  135. Gioseffi D (1957) Perspectiva artificialis: Per la storia della prospettiva; spigolature e appunti. Università Degli Studi di Trieste, Facoltà di Lettere e Filosofia, TriesteGoogle Scholar
  136. Goel AK, McAdams DA, Stone RB (2014) Biologically inspired design. Springer, London.  https://doi.org/10.1007/978-1-4471-5248-4CrossRefGoogle Scholar
  137. Gogel WC (1969) The sensing of retinal size. Vision Res 9(9):1079–1094.  https://doi.org/10.1016/0042-6989(69)90049-2CrossRefGoogle Scholar
  138. Gogel WC (1976) An indirect method of measuring perceived distance from familiar size. Percept Psychophys 20(6):419–429.  https://doi.org/10.3758/BF03208276CrossRefGoogle Scholar
  139. Gogel WC, Tietz JD (1977) Eye fixation and attention as modifiers of perceived distance. Percept Mot Skills 45(2):343–362.  https://doi.org/10.2466/pms.1977.45.2.343CrossRefGoogle Scholar
  140. Gombrich EH (1960) Art and Illusion: a study in the psychology of pictorial representation. Phaïdon Press, LondonGoogle Scholar
  141. Gough M (1998) In the laboratory of constructivism: Karl Ioganson’s cold structures. October, 84, 90.  https://doi.org/10.2307/779210Google Scholar
  142. Gramazio F, Kohler M (2014) Made by robots: challenging architecture at the large scale AD. Wiley, LondonGoogle Scholar
  143. Gramazio F, Kohler N, Oesterle S (2010) Encoding material. In: Oxman R, Oxman R (eds) The new structuralism: design, engineering and architectural technologies. Wiley, pp 108–115. Retrieved from https://books.google.it/books?id=035HAQAAIAAJ&q=The+new+Structuralism:+Design,+Engineering+and+Architectural+Technologies+AD&dq=The+new+Structuralism:+Design,+Engineering+and+Architectural+Technologies+AD&hl=it&sa=X&ved=0ahUKEwjirozclondAhVMkiwKHQFfBbEQ6A
  144. Greenough H (1947) Form and function: remarks on art, design, and architecture. University of California Press, BerkeleyGoogle Scholar
  145. Gregory RL (1970) The intelligent eye. McGraw-Hill Book Company, New YorkGoogle Scholar
  146. Gregory RL (1987) Analogue transactions with Adelbert Ames. Perception 16(3):277–282.  https://doi.org/10.1068/p160277CrossRefGoogle Scholar
  147. Gregory RL (1994) Even odder perceptions. Routledge, LondonGoogle Scholar
  148. Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented Cuts. Adv Mater 28(2):385–389.  https://doi.org/10.1002/adma.201503653CrossRefGoogle Scholar
  149. Grobman YJ, Neuman E (eds) (2013) Performalism: form and performance in digital architecture. Routledge, New YorkGoogle Scholar
  150. Gruber P, Jeronimidis G (2012) Has biomimetics arrived in architecture? Bioinspiration Biomimetics 7(1):010201.  https://doi.org/10.1088/1748-3182/7/1/010201CrossRefGoogle Scholar
  151. Hanaor A (1992) Aspects of design of double-layer tensegrity domes. Int J Space Struct 7(2):101–113.  https://doi.org/10.1177/026635119200700204CrossRefGoogle Scholar
  152. Hensel M (2010) Performance-oriented architecture: towards a biological paradigm for architectural design and the built environment. FORMakademisk 3(1):36–56.  https://doi.org/10.7577/formakademisk.138CrossRefGoogle Scholar
  153. Hensel M (2013) Performance-oriented architecture: rethinking architectural design and the built environment. Wiley, ChichesterGoogle Scholar
  154. Hensel M, Menges A (2006) Morpho-ecologies. Architectural Association, LondonGoogle Scholar
  155. Hensel M, Menges A (2008) Inclusive performance: efficiency versus effectiveness towards a morpho-ecological approach for design. Architectural Design 78(2):54–63.  https://doi.org/10.1002/ad.642CrossRefGoogle Scholar
  156. Hensel M, Menges A, Weinstock M (2010) Emergent technologies and design. Routledge, New YorkGoogle Scholar
  157. Herzog T, Natterer J, Schweitzer R, Volz M, Winter W (2004) Timber construction manual. DETAIL - Birkhäuser, BaselGoogle Scholar
  158. Hofman E, Halman JIM, Ion RA (2006) Variation in housing design: identifying customer preferences. Housing Stud 21(6):929–943.  https://doi.org/10.1080/02673030600917842CrossRefGoogle Scholar
  159. Holstov A, Bridgens B, Farmer G (2015) Hygromorphic materials for sustainable responsive architecture. Constr Build Mater 98:570–582.  https://doi.org/10.1016/J.CONBUILDMAT.2015.08.136CrossRefGoogle Scholar
  160. Holstov A, Farmer G, Bridgens B (2017) Sustainable materialisation of responsive architecture. Sustainability 9(3):435.  https://doi.org/10.3390/su9030435CrossRefGoogle Scholar
  161. Holway AH, Boring EG (1941) Determinants of apparent visual size with distance variant. Am J Psychol 54(1):21.  https://doi.org/10.2307/1417790CrossRefGoogle Scholar
  162. Huang JC (2008) Participatory design for prefab house: using internet and query approach of customizing prefabricated houses. VDM Verlag Dr. Müller, SaarbrückenGoogle Scholar
  163. Iafrate F (2018) Artificial intelligence and big data: the birth of a new intelligence. Wiley, LondonGoogle Scholar
  164. Ittelson WH, Kilpatrick FP (1952) Equivalent configurations and the monocular and binocular distorted rooms. Human nature from the transactional point of view. Institute for Associated Research, New York, pp 41–55Google Scholar
  165. Iwamoto L (2009) Digital fabrications: architectural and material techniques. Princeton Architectural Press, PrincetonGoogle Scholar
  166. Jabi W (2013) Parametric design for architecture. Laurence King, LondonGoogle Scholar
  167. Jones NL (2009a) Architecture as a complex adaptive system. Faculty of the Graduate School of Cornell UniversityGoogle Scholar
  168. Jones NL (2009b) Architecture as a complex adaptive system. Faculty of the Graduate School of Cornell UniversityGoogle Scholar
  169. Kaufmann H, Nerdinger W (eds) (2011) Building with timber: paths into the future. Prestel Verlag, MunichGoogle Scholar
  170. Kicinger R, Arciszewski T, Jong K De (2005) Evolutionary computation and structural design: a survey of the state-of-the-art. Comput Struct 83(23–24):1943–1978.  https://doi.org/10.1016/J.COMPSTRUC.2005.03.002CrossRefGoogle Scholar
  171. Kilpatrick FP, Ittelson WH (1953) The size-distance invariance hypothesis. Psychol Rev 60(4):223–231.  https://doi.org/10.1037/h0060882CrossRefGoogle Scholar
  172. Knaack U, Chung-Klatte S, Hasselbach R (2012) Prefabricated systems: principles of construction. Birkhäuser, BaselGoogle Scholar
  173. Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspiration Biomimetics 7(1).  https://doi.org/10.1088/1748-3182/7/1/015002Google Scholar
  174. Knippers J, Nickel KG, Speck T (2016) Biomimetic research for architecture and building construction: biological design and integrative structures. Springer, ChamGoogle Scholar
  175. Koenderink J, van Doorn A, Pepperell R, Pinna B (2016) On right and wrong drawings. Art Percept 4(1–2):1–38.  https://doi.org/10.1163/22134913-00002043CrossRefGoogle Scholar
  176. Kohlhammer T, Kotnik T (2011) Systemic behaviour of plane reciprocal frame structures. Struct Eng Int 21(1):80–86.  https://doi.org/10.2749/101686611X12910257102596CrossRefGoogle Scholar
  177. Kolarevic B (2004) Architecture in the digital age: design and manufacturing. Taylor & Francis, New YorkGoogle Scholar
  178. Kolarevic B (2015) From mass customisation to design ‘democratisation’. Architectural Des 85(6):48–53.  https://doi.org/10.1002/ad.1976CrossRefGoogle Scholar
  179. Kolarevic B, Klinger K (2008) Manufacturing material effects: rethinking design and making in architecture. Routledge, New YorkGoogle Scholar
  180. Kolarevic B, Malkawi A (2005) Peformative architecture. Routledge, LondonGoogle Scholar
  181. Konaković M, Crane K, Deng B, Bouaziz S, Piker D, Pauly M (2016) Beyond developable. ACM Trans Graph 35(4):1–11.  https://doi.org/10.1145/2897824.2925944CrossRefGoogle Scholar
  182. Krausse J, Lichtenstein C (2017) Your private sky R. Buckminster Fuller: the art of design science. Lars Müller, ZurichGoogle Scholar
  183. Krieg O, Christian Z, Correa D, Menges A, Reichert S, Rinderspacher K, Schwinn T (2014) HygroSkin: meteorosensitive pavilion. In: Gramazio F, Kohler M, Langenberg S (eds) FABRICATE: negotiating design and making. UCL Press, Zürich, pp 272–279Google Scholar
  184. Krieg OD, Schwinn T, Menges A, Li J-M, Knippers J, Schmitt A, Schwieger V (2015) Biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In Block P, Knippers J, Mitra NJ, Wang W (eds) Advances in architectural geometry 2014. Springer International Publishing, Cham, pp 109–125.  https://doi.org/10.1007/978-3-319-11418-7_8Google Scholar
  185. Kuhlmann D (2011) In: Gruber P, Bruckner D, Hellmich C, Schmiedmayer HB, Stachelberger H, Gebeshuber IC (eds) Biomorphism in architecture: speculations on growth and form. Springer, Berlin, pp 149–178.  https://doi.org/10.1007/978-3-642-11934-7_8CrossRefGoogle Scholar
  186. Kuroishi I (2015) Mathematics of carpentry in historic Japanese architecture. Architecture and mathematics from antiquity to the future. Springer International Publishing, Cham, pp 333–347.  https://doi.org/10.1007/978-3-319-00137-1_23CrossRefGoogle Scholar
  187. Lalvani H (1996) Origins of tensegrity: views of Emmerich, Fuller and Snelson. Int J Space Struct 11(1–2):27–55.  https://doi.org/10.1177/026635119601-204CrossRefGoogle Scholar
  188. Latour B, Weibel P (2002) Iconoclash: beyond the image wars in science, religion, and art. Center for Art and Media, KarlsruheGoogle Scholar
  189. Laugier M-A (1735) Essai sur l’architecture. chez Duchesne, ParisGoogle Scholar
  190. Lawrence TT (2003) Chassis+Infill: a consumer-driven, open source building approach for adaptable, mass customized housing. Institute of Technology, MassachusettsGoogle Scholar
  191. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114.  https://doi.org/10.1016/J.MATDES.2016.02.018CrossRefGoogle Scholar
  192. Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Yosinski J (2018) The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Neural and Evolutionary ComputingGoogle Scholar
  193. Lenyra S, Campos Titotto M, Egmar T, Deifeld C, Marcelo De Oliveira Pauletti R (2006) The monument to the Futile FormIi: conception, simulation and realization of a tensegrity membrane sculpture. La Tensored RlteGoogle Scholar
  194. Leroy C-F-A (1857) Traité de stéréotomie, comprenant les applications de la géométrie descriptive à la théorie des ombres, la perspective linéaire, la gnomonique, la coupe des pierres et la charpente, avec un atlas… par C.-F.-A. Leroy,… 2e édition… par M. E. Martelet, (Gauthiers-), Paris. Retrieved from http://catalogue.bnf.fr/ark:/12148/cb30799169v
  195. Li H, Huang T, Kong CW, Guo HL, Baldwin A, Chan N, Wong J (2008) Integrating design and construction through virtual prototyping. Autom Constr 17(8):915–922.  https://doi.org/10.1016/J.AUTCON.2008.02.016CrossRefGoogle Scholar
  196. Liapi K (2004) A computer based system for the design and fabrication of tensegrity structures. In: Beesley P, Cheng NY-W, Williamson RS (eds) Fabrication examining the digital practice of architecture: proceedings of the 2004 AIA/ACADIA fabrication conference. ACADIA, CambridgeGoogle Scholar
  197. Lonardo E (2011) Strutture Tensegrali. Retrieved from https://issuu.com/emiliolonardo/docs/strutture_tensegrali_pubb
  198. Loonen RCGM, Trčka M, Cóstola D, Hensen JLM (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25:483–493.  https://doi.org/10.1016/J.RSER.2013.04.016CrossRefGoogle Scholar
  199. López M, Rubio R, Martín S, Croxford Ben (2017) How plants inspire façades. From plants to architecture: biomimetic principles for the development of adaptive architectural envelopes. Renew Sustain Energy Rev 67:692–703.  https://doi.org/10.1016/J.RSER.2016.09.018CrossRefGoogle Scholar
  200. Loria G (1931) Il passato e il presente delle principali teorie geometriche. Cedam, PadovazbMATHGoogle Scholar
  201. Lynn G (1999) Animate form. Princeton Architectural Press, New YorkGoogle Scholar
  202. Marks RW, Buckminster Fuller R (1973) The Dymaxion world of Buckminster Fuller. Anchor Books, New YorkGoogle Scholar
  203. Masic M, Skelton RE, Gill PE (2005) Algebraic tensegrity form-finding. Int J Solids Struct 42(16–17):4833–4858.  https://doi.org/10.1016/J.IJSOLSTR.2005.01.014MathSciNetCrossRefzbMATHGoogle Scholar
  204. Masic M, Skelton RE, Gill PE (2006) Optimization of tensegrity structures. Int J Solids Struct 43(16):4687–4703.  https://doi.org/10.1016/J.IJSOLSTR.2005.07.046CrossRefzbMATHGoogle Scholar
  205. Mattheck C (1998) Design in nature: learning from trees. Springer, Berlin, HeidelbergGoogle Scholar
  206. Mazzoleni I (2013) Architecture follows nature: biomimetic principles for innovative design. CRC Press, New YorkGoogle Scholar
  207. McDonald RP, O’Hara PT (1964) Size-distance invariance and perceptual constancy. Am J Psychol 77(2):276.  https://doi.org/10.2307/1420135CrossRefGoogle Scholar
  208. McGee W, Ponce de León M (eds) (2014) Robotic fabrication in architecture, art and design 2014. Springer Science & Business Media, ChamGoogle Scholar
  209. McHale J (1964) R. Buckminster Fuller. Il Saggiatore, MilanoGoogle Scholar
  210. Medaglia AL (2007) An object-oriented framework for rapid genetic algorithm development. In: Rennard J (ed) Handbook of research on nature-inspired computing for economics and management. IGI Global, Hershey, pp 608–624.  https://doi.org/10.4018/978-1-59140-984-7.ch040CrossRefGoogle Scholar
  211. Menges A (2009) Performative wood: integral computational design for timber constructions. In: d’Estrée Sterk T, Loveridge R, Pancoast D (eds) Building a better tomorrow—proceedings of the 29th annual conference of the association for computer aided design in architecture. Association for Computer-Aided Design in Architecture, Chicago, pp 66–74Google Scholar
  212. Menges A (2011) Integrative design computation: integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions. In: ACADIA 11: integration through computation. Association for Computer Aided Design in Architecture, Banff, p 413Google Scholar
  213. Menges A (2012) Material computation: higher integration in morphogenetic design. Architectural Des 82(2):14–21.  https://doi.org/10.1002/ad.1374CrossRefGoogle Scholar
  214. Menges A (2013) Morphospaces of robotic fabrication. In: Brell-Çokcan S, Braumann J (eds) Rob | Arch 2012. Springer, Vienna, pp 28–47.  https://doi.org/10.1007/978-3-7091-1465-0_3Google Scholar
  215. Menges A (2017) Integrative design computation for advancing wood architecture. In: Menges A, Schwinn T, Krieg OD (eds) advancing wood architecture. Routledge, London, pp 97–110Google Scholar
  216. Menges A, Ahlquist S (2011) Computational design thinking. Wiley, LondonGoogle Scholar
  217. Menges A, Reichert S (2012) material capacity: embedded responsiveness. Architectural Des 82(2):52–59.  https://doi.org/10.1002/ad.1379CrossRefGoogle Scholar
  218. Menges A, Schwinn T, Krieg OD (eds) (2017a) Advancing wood architecture. Routledge, LondonGoogle Scholar
  219. Menges A, Sheil B, Glynn R, Skavara M (2017b) Fabricate: rethinking design and construction. UCL Press, LondonGoogle Scholar
  220. Merleau-Ponty M (1962) Senso e non senso (1948). Il Saggiatore, MilanGoogle Scholar
  221. Migliari R (2000) La rappresentazione e il controllo dello spazio: morte e trasfigurazione della Geometria Descrittiva. Isegnare: Idee, Immagini XI(20–21):9–18Google Scholar
  222. Migliari R, Romor J (2015) Perspective: theories and experiments on the veduta vincolata (restricted sight). J Geom Graph 19(1):57–77MathSciNetGoogle Scholar
  223. Mirats Tur JM, Juan SH (2009) Tensegrity frameworks: dynamic analysis review and open problems. Mech Mach Theory 44(1):1–18.  https://doi.org/10.1016/J.MECHMACHTHEORY.2008.06.008CrossRefzbMATHGoogle Scholar
  224. Mitchison GJ, Westheimer G (1984) The perception of depth in simple figures. Vision Res 24(9):1063–1073.  https://doi.org/10.1016/0042-6989(84)90084-1CrossRefGoogle Scholar
  225. Monge G (1789) Géométrie descriptive. Boudouin, ParisGoogle Scholar
  226. Moscati A (2012) La prospettiva pratica. Gli strumenti per costruire la prospettiva. In: De Carlo L, Migliari R, Carlevaris L (eds) Attualità della geometria descrittiva : seminario nazionale sul rinnovamento della geometria descrittiva, Roma, dicembre 2009-marzo 2010 (Gangemi). Gangemi, Rome. Retrieved from https://books.google.it/books?id=EskELgEACAAJ&dq=attualitàdellageometriaescrittiva&hl=it&source=gbs_book_other_versions
  227. Motro R (2003) Tensegrity: structural systems for the future. Kogan Page Science, LondonGoogle Scholar
  228. Motro R, Raducanu V (2003) Tensegrity systems. Int J Space Struct 18(2):77–84.  https://doi.org/10.1260/026635103769518198CrossRefGoogle Scholar
  229. Murakami H (2001) Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int J Solids Struct 38(20):3599–3613.  https://doi.org/10.1016/S0020-7683(00)00232-8CrossRefzbMATHGoogle Scholar
  230. Myers W (2012) Beyond Biomimicry. In: Myers W (ed) Bio design: nature, science, creativity. Museum of Modern Art, London, p 288Google Scholar
  231. Nahmens I, Bindroo V (2011) Is customization fruitful in industrialized homebuilding industry? J Constr Eng Manag 137(12):1027–1035.  https://doi.org/10.1061/(ASCE)CO.1943-7862.0000396CrossRefGoogle Scholar
  232. Nakahara Y, Sato H, Nii KP (1995) The complete Japanese joinery. Hartley & Marks, VancouverGoogle Scholar
  233. Negro A (1996) Il giardino dipinto del Cardinal Borghese: Paolo Bril e Guido Reni nel Palazzo Rospigliosi Pallavicini a Roma. Àrgos, RomeGoogle Scholar
  234. Neisser U (1967) Cognitive psychology. Appleton Century Crofts, New YorkGoogle Scholar
  235. Nestorovic M (1987) Metallic integrally tensioned (Tensegrity) Cupola. In: Topping HV (ed) Proceedings of international conference on the design and construction of non-conventional structures. Civil-Comp Ltd., EdinburghGoogle Scholar
  236. Ohshima T, Igarashi T, Mitani J, Tanaka H (2013) Digital fabrication-volume 1-computation and performance-eCAADe 31|. In: Proceedings of eCAADe 2013 education and research in computer aided architectural design in Europe. eCAADe, Delft, pp 693–702Google Scholar
  237. Oppenheim IJ, Williams WO (1997) Mechanics of tensegrity prisms. In: Proceedings of the 14th international symposium on automation & robotics in construction. PittsburghGoogle Scholar
  238. Oxman R (2006) Theory and design in the first digital age. Des Stud 27(3):229–265.  https://doi.org/10.1016/J.DESTUD.2005.11.002CrossRefGoogle Scholar
  239. Oxman R (2009) Performative design: a performance-based model of digital architectural design. Environ Plan 36(6):1026–1037.  https://doi.org/10.1068/b34149MathSciNetCrossRefGoogle Scholar
  240. Oxman R, Oxman R (2010a) Introduction. In: Oxman R, Oxman R (eds) The new structuralism: design, engineering and architectural technologies. Wiley, pp 14–24Google Scholar
  241. Oxman R, Oxman R (2010b) The new structuralism: design, engineering and architectural technologies. Wiley, New YorkzbMATHGoogle Scholar
  242. Oxman R, Oxman R (eds) (2014) Theories of the digital in architecture. Routledge, LondonGoogle Scholar
  243. Page IC, Norman D (2014) Prefabrication and standardisation potential in buildings (SR 312). Branz, WellingtonGoogle Scholar
  244. Paoletti I (2018) Informed architecture: computational strategies in architectural design. In: Hemmerling M, Cocchiarella L (eds) Informed architecture: computational strategies in architectural design. Springer, pp 77–88Google Scholar
  245. Paris L (2009) Stereotomia del legno. In: Migliari R (ed) Geometria Descrittiva. CittàStudi, Torino, pp 562–588Google Scholar
  246. Paronesso A, Passera R (2004) The cloud of Yverdon. In: Motro R (ed) IASS symposium 2004. IASS Secretariat, Madrid, pp 184–185Google Scholar
  247. Pastore N (1971) Selective history of theories of visual perception 1650-1950. Oxford University Press, TorontoGoogle Scholar
  248. Pawlyn M (2011) Biomimicry in architecture. RIBA Publishing, LondonGoogle Scholar
  249. Pearce P (1979) Structure in nature is a strategy for design. MIT Press, CambridgeGoogle Scholar
  250. Pearson M (2011) Generative art: a practical guide using processing. Manning, GreenwichGoogle Scholar
  251. Pecchinenda G (2010) Videogiochi e cultura della simulazione. La nascita dell’ «homo game». Laterza, Roma - BariGoogle Scholar
  252. Pedersen Zari M (2015) Ecosystem processes for biomimetic architectural and urban design. Architectural Sci Rev 58(2):106–119.  https://doi.org/10.1080/00038628.2014.968086CrossRefGoogle Scholar
  253. Pedretti C (1988) Leonardo architetto. Electa, MilanoGoogle Scholar
  254. Peña DM, Llorens I, Sastre R (2010) Application of the tensegrity principles on tensile textile constructions. Int J Space Struct 25(1):57–67.  https://doi.org/10.1260/0266-3511.25.1.57CrossRefGoogle Scholar
  255. Peri G (1884) Applicazioni della geometria descrittiva alle ombre, alla prospettiva lineare e aerea, al taglio delle pietre e del legname (G. Belotti, ed.). FirenzeGoogle Scholar
  256. Pérouse de Montclos JM (1985) La vis de Saint-Gilles et l’escalier suspendu dans l’architecture française du XVI siècle in L’escalier dans l’architecture de la Renaissance (Répertoire d’Art et d’Archéologie, Ed.). PicardGoogle Scholar
  257. Pilewski JL, Martin BA (1991) Effects of monocular versus binocular viewing in the ames distorted-room illusion. Percept Mot Skills 72(1):306.  https://doi.org/10.2466/pms.1991.72.1.306CrossRefGoogle Scholar
  258. Pillet J (1887) Traité de stéréotomie (C. Delagra). ParisGoogle Scholar
  259. Pine BJ, Slessor C (1999) Mass customization: the new frontier in business competition. Harvard Business School, BostonGoogle Scholar
  260. Popov V, Juocevicius V, Migilinskas D, Ustinovichius L, Mikalauskas S (2010) The use of a virtual building design and construction model for developing an effective project concept in 5D environment. Autom Constr 19(3):357–367.  https://doi.org/10.1016/J.AUTCON.2009.12.005CrossRefGoogle Scholar
  261. Popovic Larsen O (2003) Conceptual structural design: bridging the gap between architects and engineers. Thomas Telford, LondonGoogle Scholar
  262. Popovic Larsen O (2008) Reciprocal frame architecture. Architectural Press, OxfordGoogle Scholar
  263. Popper KR (1957) The poverty of historicism. Beacon Press, Boston, pp 123–124Google Scholar
  264. Pottmann H, Huang Q, Deng B, Schiftner A, Kilian M, Guibas L et al (2010) Geodesic patterns. ACM Trans Graph 29(4):1.  https://doi.org/10.1145/1778765.1778780Google Scholar
  265. Pugh A (1976b) Polyhedra: a visual approach. University of California Press, BerkeleyzbMATHGoogle Scholar
  266. Rajanen M, Iivari N (2015) Power, empowerment and open source usability. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI ’15, pp 3413–3422.  https://doi.org/10.1145/2702123.2702441
  267. Ramachandran VS (1990) Visual perception in people and machines. In: Blake A, Troscianko T (eds) AI and the eye. Wiley, LondonGoogle Scholar
  268. Ratti C, Claudel M (2015) Open source architecture. Thames & Hudson, New YorkGoogle Scholar
  269. Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal AircraftEstablishment, Ministry of Aviation, Farnborough HantsGoogle Scholar
  270. Reichert S, Menges A, Correa D (2015) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput Aided Des 60:50–69.  https://doi.org/10.1016/J.CAD.2014.02.010CrossRefGoogle Scholar
  271. Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Comput Aided Des 35(8):709–726.  https://doi.org/10.1016/S0010-4485(03)00003-4CrossRefGoogle Scholar
  272. Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface 6(39):951–957.  https://doi.org/10.1098/rsif.2009.0184CrossRefGoogle Scholar
  273. Richard R-B (2005) Industrialised building systems: reproduction before automation and robotics. Autom Constr 14(4):442–451.  https://doi.org/10.1016/J.AUTCON.2004.09.009CrossRefGoogle Scholar
  274. Riether G, Wit AJ (2016) Underwood Pavilion. A parametric tensegrity structure. In: Adriaenssens S, Gramazio F, Kohler M, Menges A, Pauly M (eds) Advances in architectural geometry 2016. Vdf Hochschulverlag AG an der ETH Zürich, pp 114–203Google Scholar
  275. Rippmann M, Block P (2011) Digital stereotomy: Voussoir geometry for freeform masonry-like vaults informed by structural and fabrication constraints. In: Proceedings of the IABSE-IASS symposium 2011. IABSE, BostonGoogle Scholar
  276. Roudsari MS, Pak M (2013). Ladybug: a parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. In: Proceedings of the 13th international IBPSA conference. Lyon, pp 3128–3135Google Scholar
  277. Rüggeberg M, Burgert I (2015) Bio-inspired wooden actuators for large scale applications. PLoS ONE 10(4):e0120718.  https://doi.org/10.1371/journal.pone.0120718CrossRefGoogle Scholar
  278. Runeson S (1988) The distorted room illusion, equivalent configurations, and the specificity of static optic arrays. J Exp Psychol Hum Percept Perform 14(2):295–304.  https://doi.org/10.1037/0096-1523.14.2.295CrossRefGoogle Scholar
  279. Rutten D (2013) Galapagos: on the logic and limitations of generic solvers. Architectural Des 83(2):132–135.  https://doi.org/10.1002/ad.1568CrossRefGoogle Scholar
  280. Sadao S (1996) Fuller on tensegrity. Int J Space Struct 11(1–2):37–42.  https://doi.org/10.1177/026635119601-206CrossRefGoogle Scholar
  281. Saint Aubin JP (1994) es enjeux architecturaux de la didactique stéréotomique de Desargues. In: Dhombres JG, Sakarovitch J (eds) Desargues en son temps. Librairie scientifique A. Blanchard, ParisGoogle Scholar
  282. Sakamoto T, Ferré A (2008) From control to design: parametric/algorithmic architecture. Actar-D, New YorkGoogle Scholar
  283. Salvador F, De Holan PM, Piller F (2009) Cracking the code of mass customization. MIT Sloan Manag Rev 50(3):71–79Google Scholar
  284. Salvatore M (2012) La stereotomia scientifica in Amédée François Frézier. Prodromi della geometria descrittiva nella scienza del taglio delle pietre. Università degli Studi di FirenzeGoogle Scholar
  285. Sanabria SL (1989) From gothic to renaissance stereotomy: The design methods of Philibert de l’Orme and Alonso de Vandelvira. Technol Cult 30(2):266.  https://doi.org/10.2307/3105105CrossRefGoogle Scholar
  286. Sanjurjo Alvarez A (2010) La Vis-de-Saint-Gilles: analyse du modèle dans les traités de coupe des pierres et de son influence sur les traités espagnols de l’âge moderne. In: Carvais R, Guillerme A, Nègre J, Valérie Sakarovitch (eds) Édifice & Artifice. Histoires Constructives. Editions Picard, Paris, pp 679–689Google Scholar
  287. Sass L (2006) A Wood Frame grammar: a generative system for digital fabrication. Int J Architectural Comput 4(1):51–67.  https://doi.org/10.1260/147807706777008920MathSciNetCrossRefGoogle Scholar
  288. Sass L (2012) Direct building manufacturing of homes with digital fabrication. In: Gu N, Wan X (eds) Computational design methods and technologies: applications in CAD, CAM, and CAE education. IGI Global, New YorkGoogle Scholar
  289. Sass L, Botha M (2006) The instant house: a model of design production with digital fabrication. Int J Architectural Comput 4(4):109–123.  https://doi.org/10.1260/147807706779399015CrossRefGoogle Scholar
  290. Sass L, Oxman R (2006) Materializing design: the implications of rapid prototyping in digital design. Des Stud 27(3):325–355.  https://doi.org/10.1016/J.DESTUD.2005.11.009CrossRefGoogle Scholar
  291. Scheurer F (2010) Materialising complexity. Architectural Des 80(4):86–93.  https://doi.org/10.1002/ad.1111CrossRefGoogle Scholar
  292. Schlaich M (2004) The Messeturm in rostock: a tensegrity tower. J Int Assoc Shell Spatial Struct 42(2):93–98Google Scholar
  293. Schumacher P (2011) The autopoiesis of architecture: a new framework for architecture. Wiley, West SessexGoogle Scholar
  294. Seike K (1986) The art of Japanese Joinery. Weatherhill, TankoshaGoogle Scholar
  295. Self M, Vercruysse E (2017) Infinite variations, radical strategies. In: Menges A, Sheil B, Glynn R, Skavara M (eds) Fabricate 2017 conference proceedings. UCL Press, London, pp 30–35Google Scholar
  296. Sheil B (2005) Design through making: an introduction. Architectural Des 75(4):5–12.  https://doi.org/10.1002/ad.97CrossRefGoogle Scholar
  297. Skelton RE, de Oliveira MC (2009) Tensegrity systems. Springer Science & Business Media, LondonzbMATHGoogle Scholar
  298. Skelton RE, Adhikari R, Pinaud JP, Chan W, Helton JW (2002) An introduction to the mechanics of tensegrity structures. In: Proceedings of the 40th IEEE conference on decision and control (Cat. No.01CH37228), vol 5, pp 4254–4259. IEEE, Orlando.  https://doi.org/10.1109/CDC.2001.980861
  299. Snelson K (1996) Snelson on the tensegrity invention. Int J Space Struct 11(1–2):43–48.  https://doi.org/10.1177/026635119601-207CrossRefGoogle Scholar
  300. Snelson K (2012) The art of tensegrity. Int J Space Struct 27(2–3):71–80.  https://doi.org/10.1260/0266-3511.27.2-3.71CrossRefGoogle Scholar
  301. Solomon J, Vouga E, Wardetzky M, Grinspun E (2012) Flexible developable surfaces. Comput Graph Forum 31(5):1567–1576.  https://doi.org/10.1111/j.1467-8659.2012.03162.xCrossRefGoogle Scholar
  302. Son S, Fitriani H, Kim JT, Go S, Kim S (2017) Mathematical algorithms of patterns for free-form panels. In: Proceedings of the 2nd world congress on civil, structural, and environmental engineering (CSEE’17), vol 101, pp 2371–5294. CSENM,Barcelona.  https://doi.org/10.11159/icsenm17.101
  303. Song K, Yeom E, Seo S-J, Kim K, Kim H, Lim J-H, Joon Lee S (2015) Journey of water in pine cones. Sci Rep 5(1):9963.  https://doi.org/10.1038/srep09963CrossRefGoogle Scholar
  304. Stephan S, Klimke H (2004) The making of a tensegrity tower. In: IASS 2004 symposium, international association for shell and spatial structures. Editions de l’Espérou, MontpellierGoogle Scholar
  305. Svilans T, Poinet P, Tamke M, Ramsgaard Thomsen M (2018) A multi-scalar approach for the modelling and fabrication of free-form glue-laminated timber structures. In: Humanizing digital reality. Springer, Singapore, pp 247–257.  https://doi.org/10.1007/978-981-10-6611-5_22Google Scholar
  306. Tachi T (2012) Interactive freeform design of tensegrity. In: Hesselgren L, Sharma S, Wallner J, Baldassini N, Bompas P, Raynaud J (eds) Proceedings of the advances in architectural geometry conference. Springer, Wien, pp 259–268.  https://doi.org/10.1007/978-3-7091-1251-9Google Scholar
  307. Tamborero L (2006) The “Vis Saint-Gilles”, symbol of compromise between practice and science. In: Proceedings of the second international congress on construction history. Construction History Society, Cambridge, pp 3025–3040Google Scholar
  308. Tamke M, Thomsen MR (2009) Digital wood craft. CAAD FuturesGoogle Scholar
  309. Teghtsoonian M (1965) The judgment of size. Am J Psychol 78(3):392.  https://doi.org/10.2307/1420573CrossRefGoogle Scholar
  310. Thompson DW (1917) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  311. Thönnissen U (2014) A form-finding instrument for reciprocal structures. Nexus Netw J 16(1):89–107.  https://doi.org/10.1007/s00004-014-0172-1CrossRefzbMATHGoogle Scholar
  312. Thönnissen U, Werenfels N (2011) Reciprocal frames—teaching experiences. Int J Space Struct 26(4):369–371.  https://doi.org/10.1260/0266-3511.26.4.369CrossRefGoogle Scholar
  313. Tibert G (2008) Advances in the optimization and form-finding of tensegrity structures. In: Proceedings of the 6th international conference on computation of shell & spatial structures. Internet-First University Press, StockholmGoogle Scholar
  314. Tibert AG, Pellegrino S (2011) Review of form-finding methods for tensegrity structures. Int J Space Struct 26(3):241–255.  https://doi.org/10.1260/0266-3511.26.3.241Google Scholar
  315. Tran TM (2002) Reverse displacement analysis for tensegrity structures. University of Florida. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.2315&rep=rep1&type=pdf
  316. Trevisan C (2011) Per la storia della stereotomia: geometrie, metodi e construzioni. Aracne, RomaGoogle Scholar
  317. Tsigkari M, Angelos C, Joyce SC, Davis A, Feng S, Aish F (2013) Integrated design in the simulation process. In: Proceedings of the symposium on simulation for architecture & urban design. Society for Computer Simulation International, San DiegoGoogle Scholar
  318. Turan M (2009) Reconstructing the balloon frame: a study in the history of architectonics. METU J 2(26):175–209.  https://doi.org/10.4305/METU.JFA.2009.2.10CrossRefGoogle Scholar
  319. Turrin M, von Buelow P, Stouffs R (2011) Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Adv Eng Inform 25(4):656–675.  https://doi.org/10.1016/J.AEI.2011.07.009CrossRefGoogle Scholar
  320. Ugolev BN (2014) Wood as a natural smart material. Wood Sci Technol 48(3):553–568.  https://doi.org/10.1007/s00226-013-0611-2CrossRefGoogle Scholar
  321. Vailati C, Bachtiar E, Hass P, Burgert I, Rüggeberg M (2018) An autonomous shading system based on coupled wood bilayer elements. Energy Build 158:1013–1022.  https://doi.org/10.1016/J.ENBUILD.2017.10.042CrossRefGoogle Scholar
  322. Van Telgen MV, Snijder H, Habraken APH, Beetz J (2013) Parametric design and calculation of circular and elliptical tensegrity domes. In: IASS 2013 Wroclaw: ‘Beyond the Limits of Man’—structural morphology. International Association for Shell and Spatial Structures (IASS), Eindhoven, pp 1–8Google Scholar
  323. Vassart N, Motro R (1999) Multiparametered formfinding method: application to tensegrity systems. Int J Space Struct 14(2):147–154.  https://doi.org/10.1260/0266351991494768CrossRefGoogle Scholar
  324. Vattam S, Helms ME, Goel AK (2007) Biologically-inspired innovation in engineering design: a cognitive study, Atlanta. Retrieved from http://hdl.handle.net/1853/14346
  325. Vierlinger R (2013) A framework for flexible search and optimization in parametric design. In: Rethinking prototyping—proceedings of the design modelling symposium. Berlin. Retrieved from https://www.researchgate.net/profile/Robert_Vierlinger/publication/283073197_A_Framework_for_Flexible_Search_and_Optimization_in_Parametric_Design/links/5628c83308ae04c2aeaeb6cb.pdf
  326. Vierlinger R (2015) Towards ai drawing agents. In: Ramsgaard Thomsen M, Tamke M, Gengnagel F, Faircloth C, Scheurer B (eds) Modelling behaviour. Springer International Publishing, Cham, pp 357–369.  https://doi.org/10.1007/978-3-319-24208-8_30Google Scholar
  327. Vierlinger R, Bollinger K (2014) Accommodating change in parametric design. In: Proceedings of ACADIA 2014. Association for Computer-Aided Design in Architecture, Los AngelesGoogle Scholar
  328. Vierlinger R, Zimmel C (2015) Octopus. Retrieved 27 Aug 2018, from https://www.grasshopper3d.com/group/octopus?groupUrl=octopus&id=2985220%3AGroup%3A742529&page=3
  329. Vincent J (2009) Biomimetic patterns in architectural design. Architectural Des 79(6):74–81.  https://doi.org/10.1002/ad.982CrossRefGoogle Scholar
  330. Vogel JM, Teghtsoonian M (1972) The effects of perspective alterations on apparent size and distance scales. Percept Psychophys 11(4):294–298.  https://doi.org/10.3758/BF03210382CrossRefGoogle Scholar
  331. Wang B (2004) Free-standing tension structures: from tensegrity systems to cable-strut systems. Spon PressGoogle Scholar
  332. Weber S (2005) The success of open source. Harvard University Press, CambridgeGoogle Scholar
  333. Weinand Y (2016) Advanced timber structures: architectural designs and digital dimensioning. Birkhäuser, BaselGoogle Scholar
  334. Wester T (2002) Nature teaching structures. Int J Space Struct 17(2–3):135–147.  https://doi.org/10.1260/026635102320321789CrossRefGoogle Scholar
  335. Wikipedia (2015) The poverty of historicism (2002nd ed.). Routledge, LondonGoogle Scholar
  336. Willis D, Woodward T (2010) Diminishing difficulty: mass customisation and the digital production of architecture. In Corser R (ed) Fabricating architecture: selected readings in digital design and manufacturing. Princeton Architectural Press, pp 184–208Google Scholar
  337. Willmann J, Gramazio F, Kohler M (2017) New paradigms of the automatic: robotic timber construction in architecture. In: Menges A, Schwinn T, Krieg OD (eds) Advancing wood architecture. A computational approach. Routledge, London, pp 13–28.  https://doi.org/10.4324/9781315678825-11
  338. Wood DM, Correa D, Krieg OD, Menges A (2016) Material computation—4D timber construction: towards building-scale hygroscopic actuated, self-constructing timber surfaces. Int J Architectural Comput 14(1):49–62.  https://doi.org/10.1177/1478077115625522CrossRefGoogle Scholar
  339. Wood D, Vailati C, Menges A, Rüggeberg M (2018) Hygroscopically actuated wood elements for weather responsive and self-forming building parts—facilitating upscaling and complex shape changes. Constr Build Mater 165:782–791.  https://doi.org/10.1016/J.CONBUILDMAT.2017.12.134CrossRefGoogle Scholar
  340. Woodbury R (2010) Elements of parametric design. Routledge, LondonGoogle Scholar
  341. Zarrinmehr S, Akleman E, Ettehad M, Kalantar N, Borhani A (2017) Kerfing with generalized 2D meander-patterns: conversion of planar rigid panels into locally-flexible panels with stiffness control. In: Çagdas G, Özkar M, Gül LF, Gürer E (eds) Future Trajectories of computation in design. Cenkler Matbaa, Istanbul, pp 276–293Google Scholar
  342. Zhang L, Maurin B, Motro R (2006) Form-finding of nonregular tensegrity systems. J Struct Eng 132(9):1435–1440.  https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1435)CrossRefGoogle Scholar
  343. Zipkin P (2001) The limits of mass customization. MIT Sloan Manag Rev 42(3):81–87. https://doi.org/ISSN: 1532-9194Google Scholar
  344. Zitzler E, Laumanns M, Thiele L, Zitzler E (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Zurigo.  https://doi.org/10.3929/ethz-a-004284029
  345. Zwerger K (1997) Wood and wood joints: building traditions of Europe, Japan and China. Birkhäuser, BaselGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations