Skip to main content

A Framework for Tackling Myopia in Concept Learning on the Web of Data

  • Conference paper
  • First Online:
Book cover Knowledge Engineering and Knowledge Management (EKAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11313))

Included in the following conference series:

Abstract

A prominent class of supervised methods for the representations adopted in the context of the Web of Data are designed to solve concept learning problems. Such methods aim at approximating an intensional definition for a target concept from a set of individuals of a target knowledge base. In this scenario, most of the well-known solutions exploit a separate-and-conquer approach: intuitively, the learning algorithm builds an intensional definition by repeatedly specializing a partial solution with the aim of covering the largest number of positive examples as possible. Essentially such a strategy can be regarded as a form of hill-climbing search that can produce sub-optimal solutions. To cope with this problem, we propose a novel framework for the concept learning problem called DL-Focl. Three versions of this algorithmic solution, built upon DL-Foil, have been designed to tackle the inherent myopia of the separate-and-conquer strategies. Their implementation has been empirically tested against methods available in the DL-Learner suite showing interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This may be considered a basic upper refinement operator allowed by expressive DL languages (encompassing \(\mathcal {ALC}\)).

  2. 2.

    A further correction of the ratios is made resorting to Laplace smoothing (m-estimates) to avoid divisions by 0.

  3. 3.

    The source code and the datasets and ontologies are publicly available at: https://bitbucket.org/grizzo001/dlfocl/src/master/.

  4. 4.

    The experiments were carried out on a 8-core Ubuntu server with 16 GB RAM.

  5. 5.

    spark.apache.org.

  6. 6.

    flink.apache.org.

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  2. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS, vol. 1866, pp. 40–59. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44960-4_3

    Chapter  Google Scholar 

  3. Bühmann, L., Lehmann, J., Westphal, P.: DL-Learner - a framework for inductive learning on the Semantic Web. J. Web Sem. 39, 15–24 (2016)

    Article  Google Scholar 

  4. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68856-3

    Book  MATH  Google Scholar 

  5. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85928-4_12

    Chapter  Google Scholar 

  6. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_34

    Chapter  Google Scholar 

  7. Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, 2nd edn. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1665-5

    Book  MATH  Google Scholar 

  8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, Sebastopol (2011)

    Google Scholar 

  9. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)

    Article  Google Scholar 

  10. Lehmann, J., Fanizzi, N., Bühmann, L., d’Amato, C.: Concept learning. In: Lehmann, J., Voelker, J. (eds.) Perspectives on Ontology Learning, chap. 2, pp. 71–91. AKA/IOS Press (2014)

    Google Scholar 

  11. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1–2), 203–250 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Semant. 9, 71–81 (2011)

    Article  Google Scholar 

  13. Lehmann, J., Haase, C.: Ideal downward refinement in the \(\cal{EL}\) description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13840-9_8

    Chapter  MATH  Google Scholar 

  14. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\cal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS, vol. 4894, pp. 147–160. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_17

    Chapter  MATH  Google Scholar 

  15. Pazzani, M., Kibler, D.: The utility of knowledge in inductive learning. Mach. Learn. 9(1), 57–94 (1992)

    Google Scholar 

  16. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Tree-based models for inductive classification on the Web Of Data. J. Web Sem. 45, 1–22 (2017)

    Article  Google Scholar 

  17. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: An approach to parallel class expression learning. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 302–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32689-9_25

    Chapter  Google Scholar 

  18. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: Parallel symmetric class expression learning. J. Mach. Learn. Res. 18, 64:1–64:34 (2017)

    Google Scholar 

  19. Tran, T., Ha, Q., Hoang, T., Nguyen, L.A., Nguyen, H.S.: Bisimulation-based concept learning in description logics. Fundam. Inform. 133(2–3), 287–303 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F. (2018). A Framework for Tackling Myopia in Concept Learning on the Web of Data. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds) Knowledge Engineering and Knowledge Management. EKAW 2018. Lecture Notes in Computer Science(), vol 11313. Springer, Cham. https://doi.org/10.1007/978-3-030-03667-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03667-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03666-9

  • Online ISBN: 978-3-030-03667-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics