A Deep Learning Based Pipeline for Image Grading of Diabetic Retinopathy

  • Yu WangEmail author
  • G. Alan Wang
  • Weiguo Fan
  • Jiexun Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10983)


Diabetic Retinopathy (DR) is one of the principal sources of blindness due to diabetes mellitus. It can be identified by lesions of the retina, namely, microaneurysms, hemorrhages, and exudates. DR can be effectively prevented or delayed if discovered early enough and well-managed. Prior image processing studies on diabetic retinopathy typically extract features manually but are time-consuming and not accurate. In this research, we propose a research framework using advanced retina image processing, deep learning, and boosting algorithm for high-performance DR grading. First, we preprocess the retina image datasets to highlight signs of DR, then employ a convolutional neural network to extract features of retina images, and finally apply a boosting tree algorithm to make a prediction. Experimental results show that our pipeline has excellent performance when grading diabetic retinopathy score on Kaggle dataset.


Retina image Image grading Diabetic retinopathy Early detection Feature extraction ConvNN Deep learning Boosting tree 


  1. 1.
    World Health Organization: Global report on diabetes (2016)Google Scholar
  2. 2.
    Brosch T., Tam R., The Alzheimer’s Disease Neuroimaging Initiative: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. LNCS, vol 8150. Springer, Heidelberg (2013). Scholar
  3. 3.
    Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Suk, H.-I., Lee, S.-W., Shen, D., The Alzheimer’s Disease Neuroimaging Initiative et al.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015)Google Scholar
  5. 5.
    Suk, H.-I., Shen, D.: Deep ensemble sparse regression network for Alzheimer’s disease diagnosis. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 113–121. Springer, Cham (2016). Scholar
  6. 6.
    Anavi, Y., Kogan, I., Gelbart, E., Geva, O., Greenspan, H.: A comparative study for chest radiograph image retrieval using binary texture and deep learning classification. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2940–2943. IEEE (2015)Google Scholar
  7. 7.
    Wang, C., Elazab, A., Wu, J., Hu, Q.: Lung nodule classification using deep feature fusion in chest radiography. Comput. Med. Imaging Graph. 57, 10–18 (2017)CrossRefGoogle Scholar
  8. 8.
    Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)CrossRefGoogle Scholar
  9. 9.
    Klein, R., Klein, B.E., Neider, M.W., Hubbard, L.D., Meuer, S.M., Brothers, R.J.: Diabetic retinopathy as detected using ophthalmoscopy, a nonmyciriatic camera and a standard fundus camera. Ophthalmology 92(4), 485–491 (1985)CrossRefGoogle Scholar
  10. 10.
    Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). Scholar
  11. 11.
    Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 698–701. IEEE (2016)Google Scholar
  12. 12.
    Graham, B.: Kaggle diabetic retinopathy detection competition report. University of Warwick (2015)Google Scholar
  13. 13.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  14. 14.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  15. 15.
    Huang, G., Liu, Z., Weinberger, K. Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)Google Scholar
  16. 16.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceVirginia TechBlacksburgUSA
  2. 2.Department of Business Information TechnologyVirginia TechBlacksburgUSA
  3. 3.Department of Accounting and Information SystemsVirginia TechBlacksburgUSA
  4. 4.Department of Decision SciencesWestern WashingtonBellinghamUSA

Personalised recommendations