Advertisement

Drug-Drug Interactions Prediction Based on Similarity Calculation and Pharmacokinetics Mechanism

  • Quan Lu
  • Liangtao Zhang
  • Jing ChenEmail author
  • Zeyuan Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10983)

Abstract

Drug-drug interactions (DDIs) are one of the major causes of adverse drug events (ADEs), therefore, the prediction of DDIs for avoiding the ADEs is an important issue, which can help medical researchers economize research related resources in clinical trials. This study aims to predict DDIs based on drug similarity and ontology reasoning, and accordingly gives some possible explanations to why these drugs have DDIs. we develop a DDIs ontology integrated with similar drugs and pharmacokinetics(PK) mechanism, and formulate rules for inferring DDIs. Our method extends the existing research ideas, not only adds extrapolation of unknown data, but also reduces reliance on known data, and innovatively combines similar drugs with PK mechanism, which proved to be useful for inferring DDIs and can give some possible explanations for these DDIs. Besides our study is less demanding for data type, and the rules are more concise.

Keywords

Drug-drug interactions Pharmacokinetic mechanism Ontology Inference Similarity 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support for this work provided by National Natural Science Foundation of China (No: 61772375 and 71420107026) and the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities (No: 17JJD870002).

Conflicts of Interest

The authors declare they have no conflicts of interest in this research.

Protection of Human and Animal Subjects

Neither human nor animal subjects were included in this project.

References

  1. 1.
    Matsuki, E., Tsukada, Y., Nakaya, A., et al.: Successful treatment of adult onset Langerhans cell histiocytosis with multi-drug combination therapy. Internal Med. 50(8), 909–914 (2011)CrossRefGoogle Scholar
  2. 2.
    Ito, K., Iwatsubo, T., Kanamitsu, S., et al.: Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol. Rev. 50(3), 387 (1998)Google Scholar
  3. 3.
    Nestorov, I.: Whole body pharmacokinetic models. Clin. Pharmacokinet. 42(10), 883–908 (2003)CrossRefGoogle Scholar
  4. 4.
    Percha, B., Altman, R.B.: Informatics confronts drug–drug interactions. Trends Pharmacol. Sci. 34(3), 178 (2013)CrossRefGoogle Scholar
  5. 5.
    Filippatos, T.D., Derdemezis, C.S., Gazi, I.F., et al.: Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 31(1), 53 (2008)CrossRefGoogle Scholar
  6. 6.
    Beijnen, J.H., Schellens, J.H.: Drug interactions in oncology. Lancet Oncol. 5(8), 489 (2004)CrossRefGoogle Scholar
  7. 7.
    Luo, H., Zhang, P., Huang, H., et al.: DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome. Nucleic Acids Res. 42(Web Server issue), W46 (2014)CrossRefGoogle Scholar
  8. 8.
    Hisaka, A., Ohno, Y., Yamamoto, T., et al.: Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Therapeut. 125(2), 230–248 (2010)CrossRefGoogle Scholar
  9. 9.
    Huang, J., Niu, C., Green, C.D., Yang, L., Mei, H., Han, J.D.: Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput. Biol. 9(3), e1002998 (2013)CrossRefGoogle Scholar
  10. 10.
    Hunta, S., Aunsri, N., Yooyativong, T.: Drug-drug interactions prediction from enzyme action crossing through machine learning approaches. In: International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 24–27 June 2015, pp. 1–4. IEEE, Hua Hin (2015)Google Scholar
  11. 11.
    Hunta, S., Aunsri, N., Yooyativong, T.: Integrated action crossing method for drug-drug interactions prediction in noncommunicable diseases based on neural networks. In: International Conference on Digital Arts, Media and Technology, 1–4 March 2017, pp. 259–262. IEEE, Chiang Mai (2017)Google Scholar
  12. 12.
    Tari, L., Anwar, S., Liang, S., et al.: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26(18), i547–i553 (2010)CrossRefGoogle Scholar
  13. 13.
    Yoshikawa, S., Satou, K., Konagaya, A.: Drug interaction ontology (DIO) for inferences of possible drug-drug interactions. Stud. Health Technol. Inform. 107(Pt 1), 454 (2004)Google Scholar
  14. 14.
    Herrerozazo, M., Segurabedmar, I., Martínez, P.: Conceptual models of drug-drug interactions: a summary of recent efforts. Knowl.-Based Syst. 114, 99–107 (2016)CrossRefGoogle Scholar
  15. 15.
    Imai, T., Hayakawa, M., Ohe, K.: Development of description framework of pharmacodynamics ontology and its application to possible drug-drug interaction reasoning. Stud. Health Technol. Inform. 192(1), 567 (2013)Google Scholar
  16. 16.
    Herrerozazo, M., Segurabedmar, I., Hastings, J., et al.: DINTO: using OWL ontologies and SWRL rules to infer drug-drug interactions and their mechanisms. J. Chem. Inf. Model. 55(8), 1698 (2015)CrossRefGoogle Scholar
  17. 17.
    Keiser, M.J., Roth, B.L., Armbruster, B.N., et al.: Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197 (2007)CrossRefGoogle Scholar
  18. 18.
    Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity. Am. Math. Mon. 12, 96–97 (2005)Google Scholar
  19. 19.
    Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45(19), 4350 (2002)CrossRefGoogle Scholar
  20. 20.
    Vilar, S., Cozza, G., Moro, S.: Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 8(18), 1555–1572 (2008)CrossRefGoogle Scholar
  21. 21.
    Faulon, J.L., Misra, M., Martin, S., et al.: Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor. Bioinformatics 24(2), 225–233 (2008)CrossRefGoogle Scholar
  22. 22.
    Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRefGoogle Scholar
  23. 23.
    Fokoue, A., Sadoghi, M., Hassanzadeh, O., Zhang, P.: Predicting drug-drug interactions through large-scale similarity-based link prediction. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 774–789. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34129-3_47CrossRefGoogle Scholar
  24. 24.
    Kim, S., Jin, D., Lee, H.: Predicting drug-target interactions using drug-drug interactions. PLoS One 8(11), e80129 (2013)CrossRefGoogle Scholar
  25. 25.
    Rask-Andersen, M., Almén, M.S., Schiöth, H.B.: Trends in the exploitation of novel drug targets. Nat. Rev. Drug. Discov. 10(8), 579 (2011)CrossRefGoogle Scholar
  26. 26.
    Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug. Discov. 5(12), 993 (2006)CrossRefGoogle Scholar
  27. 27.
    Cosine similarity, 4 October 2017. https://en.wikipedia.org/wiki/Cosine_similarity
  28. 28.
    Maedche, A.: Ontology Learning for the Semantic Web. IEEE Intell. Syst. 16(2), 72–79 (2002)CrossRefGoogle Scholar
  29. 29.
    Mcguinness, D.L., Harmelen, F.: OWL web ontology language overview 63(45), 990–996 (2004)Google Scholar
  30. 30.
    Boyce, R.D., Collins, C., Horn, J., et al.: Modeling drug mechanism knowledge using evidence and truth maintenance. IEEE Trans. Inf. Technol. Biomed. 11(4), 386–397 (2007)CrossRefGoogle Scholar
  31. 31.
    Moitra, A., Palla, R., Tari, L., Krishnamoorthy, M.: Semantic inference for pharmacokinetic drug-drug interactions. In: IEEE International Conference on Semantic Computing, 16–18 June 2014, pp. 92–95. IEEE, Newpoet Beach (2014)Google Scholar
  32. 32.
    Preissner, S., Kroll, K., Dunkel, M., Senger, C., Goldsobel, G., Kuzman, D., et al.: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucl. Acids Res. 38, D237 (2010)CrossRefGoogle Scholar
  33. 33.
    Li, H., Qiang, S.: Parallel mining of OWL 2 EL ontology from large linked datasets. Knowl.-Based Syst. 84, 10–17 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Studies of Information ResourcesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.School of Information ManagementWuhan UniversityWuhanPeople’s Republic of China
  3. 3.School of Information ManagementCentral China Normal UniversityWuhanPeople’s Republic of China
  4. 4.Henry Samueli School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations