Skip to main content

Towards Plug&Play Smart Thermostats for Building’s Heating/Cooling Control

  • Chapter
  • First Online:
IoT for Smart Grids

Part of the book series: Power Systems ((POWSYS))

  • 1530 Accesses

Abstract

Buildings are immensely energy-demanding and this fact is enhanced by the expectation of even more increment of energy consumption in the near future, while the building’s cooling and heating has a significant impact on the overall energy consumption (around 40%). Therefore it is necessary to find proper ways for mitigating the increasing energy cost of HVAC systems (Heating Ventilation and Air Conditioning). The problem of increased energy requirements becomes far more crucial by taking into consideration the sub-optimal operation of HVAC systems by the occupants. In order to alleviate these drawbacks, throughout this chapter we introduce a decision-making mechanism in order to support the temperature control within buildings. For this purpose, a smart thermostat concept is applied, where emphasis is given to lowering the cost and deployment flexibility, in order to be widely adopted in different buildings and regions. The proposed mechanism incorporates supervised learning and reinforcement learning techniques in order to solve a multi-objective problem that comprises both satisfying occupant’s thermal comfort and minimize energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The modeling of the building was part of the PEBBLE FP7 project (http://www.pebble-fp7.eu) funded by the European Commission under the grand agrement 248537.

  2. 2.

    This threshold is the acceptable limit for buildings due to the EN15251 European standard.

References

  1. Afram, A., Janabi-Sharifi, F.: Theory and applications of hvac control systems-a review of model predictive control (mpc). Build. Environ. 72, 343–355 (2014)

    Article  Google Scholar 

  2. Alcal, R., Casillas, J., Cordn, O., Gonzlez, A., Herrera, F.: A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. Eng. Appl. Artif. Intell. 18(3), 279–296 (2005)

    Article  Google Scholar 

  3. Angelov, P.P., Buswell, R.A.: Automatic generation of fuzzy rule-based models from data by genetic algorithms. Inf. Sci. 150(1–2), 17–31 (2003)

    Article  Google Scholar 

  4. Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans. Smart Grid 6(1), 324–332 (2015)

    Article  Google Scholar 

  5. Baar, T., Bernhard, P.: If-Optimal Control and Related Minimax Design Problems. Birkhauser, Basel (1995)

    Google Scholar 

  6. Barrett, E., Linder, S.: Autonomous hvac control, a reinforcement learning approach. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 3–19. Springer, Berlin (2015)

    Chapter  Google Scholar 

  7. Behboodi, S., Chassin, D.P., Djilali, N., Crawford, C.: Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets. Appl. Energy 210, 1310–1320 (2018)

    Article  Google Scholar 

  8. Ben-Nakhi, A.E., Mahmoud, M.A.: Energy conservation in buildings through efficient a/c control using neural networks. Appl. Energy 73(1), 5–23 (2002)

    Article  Google Scholar 

  9. Boait, P.J., Rylatt, R.: A method for fully automatic operation of domestic heating. Energy Build. 42(1), 11–16 (2010)

    Article  Google Scholar 

  10. Bollegala, D.: Dynamic feature scaling for online learning of binary classifiers. Knowl.-Based Syst. 129, 97–105 (2017)

    Article  Google Scholar 

  11. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  Google Scholar 

  12. Calvino, F., La Gennusa, M., Rizzo, G., Scaccianoce, G.: The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller. Energy Build. 36(2), 97–102 (2004)

    Article  Google Scholar 

  13. Chassin, D.P., Stoustrup, J., Agathoklis, P., Djilali, N.: A new thermostat for real-time price demand response: Cost, comfort and energy impacts of discrete-time control without deadband. Appl. Energy 155, 816–825 (2015)

    Article  Google Scholar 

  14. Coley, G.: Beagleboard system reference manual. BeagleBoard. org, p. 81 (2009)

    Google Scholar 

  15. Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W., Huang, Y., Pedersen, C.O., Strand, R.K., Liesen, R.J., Fisher, D.E., Witte, M.J., Glazer, J.: Energyplus: creating a new-generation building energy simulation program. Energy Build. 33(4), 319–331 (2001)

    Article  Google Scholar 

  16. Dalamagkidis, K., Kolokotsa, D., Kalaitzakis, K., Stavrakakis, G.S.: Reinforcement learning for energy conservation and comfort in buildings. Build. Environ. 42(7), 2686–2698 (2007)

    Article  Google Scholar 

  17. Danassis, P., Siozios, K., Korkas, C., Soudris, D., Kosmatopoulos, E.: A low-complexity control mechanism targeting smart thermostats. Energy Build. 139, 340–350 (2017)

    Article  Google Scholar 

  18. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal home energy management under dynamic electrical and thermal constraints. IEEE Trans. Ind. Inf. 9(3), 1518–1527 (2013)

    Article  Google Scholar 

  19. Dounis, A.I., Caraiscos, C.: Advanced control systems engineering for energy and comfort management in a building environmenta review. Renew. Sustain. Energy Rev. 13(6–7), 1246–1261 (2009)

    Article  Google Scholar 

  20. Department of Energy, U.S.: Energyplus energy simulation software (2015). http://apps1.eere.energy.gov/buildings/energyplus/

  21. E.U. Commission: European energy and transport - trends to 2030 (update 2007) (2008). http://aei.pitt.edu/46140/

  22. Eurostat: Energy balance sheets. Data 2002–2003, Luxemburg (2005)

    Google Scholar 

  23. Fanger, P.O., et al.: Thermal Comfort. Analysis and Applications in Environmental Engineering. Danish Technical Press, Copenhagen (1970)

    Google Scholar 

  24. Gehring, C., Precup, D.: Smart exploration in reinforcement learning using absolute temporal difference errors. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 1037–1044. International Foundation for Autonomous Agents and Multiagent Systems (2013)

    Google Scholar 

  25. Harrold, M., Lush, D.: Automatic controls in building services. In: IEE Proceedings B (Electric Power Applications), vol. 135, pp. 105–133. IET (1988)

    Google Scholar 

  26. Haykin, S.S., Haykin, S.S., Haykin, S.S., Haykin, S.S.: Neural Networks and Learning Machines, vol. 3. Pearson, Upper Saddle River (2009)

    MATH  Google Scholar 

  27. Huang, W., Lam, H.: Using genetic algorithms to optimize controller parameters for hvac systems. Energy Build. 26(3), 277–282 (1997)

    Article  Google Scholar 

  28. Kolokotsa, D., Stavrakakis, G., Kalaitzakis, K., Agoris, D.: Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using plc and local operating networks. Eng. Appl. Artif. Intell. 15(5), 417–428 (2002)

    Article  Google Scholar 

  29. Kontes, G., Giannakis, G., Kosmatopoulos, E.B., Rovas, D.: Adaptive-fine tuning of building energy management systems using co-simulation. In: 2012 IEEE International Conference on Control Applications (CCA), pp. 1664–1669. IEEE (2012)

    Google Scholar 

  30. Kumar, R., Aggarwal, R., Sharma, J.: Energy analysis of a building using artificial neural network: a review. Energy Build. 65:352–358 (2013). https://doi.org/10.1016/j.enbuild.2013.06.007, http://www.sciencedirect.com/science/article/pii/S0378778813003459

    Article  Google Scholar 

  31. Levermore, G.J.: Building Energy Management Systems: An Application to Heating and Control. E & FN Spon, London (1992)

    Google Scholar 

  32. Liang, J., Du, R.: Thermal comfort control based on neural network for hvac application. In: Proceedings of 2005 IEEE Conference on Control Applications, CCA 2005, pp. 819–824. IEEE (2005)

    Google Scholar 

  33. Lu, N.: An evaluation of the hvac load potential for providing load balancing service. IEEE Trans. Smart Grid 3(3), 1263–1270 (2012). https://doi.org/10.1109/TSG.2012.2183649

    Article  Google Scholar 

  34. Magni, L., De Nicolao, G., Magnani, L., Scattolini, R.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9), 1351–1362 (2001)

    Article  MathSciNet  Google Scholar 

  35. Marantos, C., Siozios, K., Soudris, D.: A flexible decision-making mechanism targeting smart thermostats. IEEE Embed. Syst. Lett. 9(4), 105–108 (2017)

    Article  Google Scholar 

  36. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  37. Menniti, D., Costanzo, F., Scordino, N., Sorrentino, N.: Purchase-bidding strategies of an energy coalition with demand-response capabilities. IEEE Trans. Power Syst. 24(3), 1241–1255 (2009)

    Article  Google Scholar 

  38. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  39. Nguyen, D.T., Le, L.B.: Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Trans. Smart Grid 5(4), 1608–1620 (2014)

    Article  Google Scholar 

  40. Research, S.: Global smart thermostats market 2015–2019 (2015). http://www.sandlerresearch.org/global-smart-thermostats-market-2015-2019.html/

  41. Riedmiller, M.: Neural fitted q iteration–first experiences with a data efficient neural reinforcement learning method. In: European Conference on Machine Learning, pp. 317–328. Springer, Berlin (2005)

    Chapter  Google Scholar 

  42. Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to drive a real car in 20 minutes. In: Frontiers in the Convergence of Bioscience and Information Technologies, FBIT 2007, pp. 645–650. IEEE (2007)

    Google Scholar 

  43. Sagerschnig, C., Gyalistras, D., Seerig, A., Prívara, S., Cigler, J., Vana, Z.: Co-simulation for building controller development: the case study of a modern office building. In: Proceedings of CISBAT, pp. 14–16 (2011)

    Google Scholar 

  44. Singh, J., Singh, N., Sharma, J.: Fuzzy modeling and control of hvac systems–a review (2006)

    Google Scholar 

  45. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT press, Cambridge (1998)

    Google Scholar 

  46. Teng, T.H., Tan, A.H., Tan, Y.S.: Self-regulating action exploration in reinforcement learning. Procedia Comput. Sci. 13, 18–30 (2012)

    Article  Google Scholar 

  47. Tesauro, G.: Td-gammon: a self-teaching backgammon program. Applications of Neural Networks, pp. 267–285. Springer, Boston (1995)

    Chapter  Google Scholar 

  48. Weather Data: Weather data sources for energyplus framework (2015). http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_sources.cfm/

  49. Wei, T., Wang, Y., Zhu, Q.: Deep reinforcement learning for building hvac control. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2017)

    Google Scholar 

  50. Wetter, M.: Co-simulation of building energy and control systems with the building controls virtual test bed. J. Build. Perform. Simul. 4(3), 185–203 (2011)

    Article  Google Scholar 

  51. Yoon, J.H., Baldick, R., Novoselac, A.: Dynamic demand response controller based on real-time retail price for residential buildings. IEEE Trans. Smart Grid 5(1), 121–129 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Marantos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marantos, C., Lamprakos, C., Siozios, K., Soudris, D. (2019). Towards Plug&Play Smart Thermostats for Building’s Heating/Cooling Control. In: Siozios, K., Anagnostos, D., Soudris, D., Kosmatopoulos, E. (eds) IoT for Smart Grids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-03640-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03640-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03169-5

  • Online ISBN: 978-3-030-03640-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics