Skip to main content

Endophytic Fungi: Promising Source of Novel Bioactive Compounds

  • Chapter
  • First Online:
Advances in Endophytic Fungal Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Natural products have been used since earliest times for the treatment of several ailments. They offer excellent prospects for discovery of bioactive compounds and are the basis for the synthesis of effective drugs. Natural products from endophytic fungi of medicinal plants have been recognized as potential sources of bioactive compounds. Endophytes exemplify a diverse microbial community that exists in distinct environments and their diversity in these unique habitats benefits in the exploration of novel bioactive compounds. Fungal endophytes occur ubiquitously in plants and are generally asymptomatic within the host plants. The mutualistic association of a plant with an endophyte could influence the production of analogous bioactive compounds as the host plant. An understanding of biologically active compound production mechanism and their activity is essential for the development of new compounds in the drug discovery process. From the time when taxol, a potent anticancer compound was discovered, research on endophytic fungi has gained momentum and yielded several compounds with antibacterial, antiviral, antioxidant, immunosuppressant, anti-inflammatory, anti-diabetic, and anticancer properties. The main focus of this chapter is to provide a concise approach to the origin, classification, host-endophyte symbiosis, and the endophytic fungal role in diverse areas such as plant growth enhancers, antimicrobials, anticancer agents, and antioxidants. This chapter aims to highlight the potential benefits of secondary metabolites of endophytic fungi in varied fields which are valuable to mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd–Elsalam KA, Hashim AF (2013) Hidden fungi as microbial and nano–factories for anticancer agents. Fungal Genom Biol 3:e115

    Article  Google Scholar 

  • Akay S, Ekiz G, Kocabas F, EE H–K, Korkmaz KS, Bedir E (2014) A new 5, 6-dihydro-2-pyrone derivative from Phomopsis amygdali, an endophytic fungus isolated from hazelnut (Corylusavellana). Phytochem Lett 7:93

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2):51–66

    Article  Google Scholar 

  • Arnold AE, Lewis LC (2005) Ecology and evolution of fungal endophytes, and their roles against insects. In: Vega FE, Blackwell M (eds) Insect–Fungal Associations: Ecology and evolution. Oxford University Press, New York, pp 74–96

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Bacon CW, Porter JK, Robins JD, Lutrell EJ (1977) Epichloë typhina from toxic tall fescue grass. Appl Environ Microbiol 34:576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78(5):431–441

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144(2):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff JF, White JF (2005) Evolutionary development of the Clavicipitaceae. Mycology Series, 23:505

    Google Scholar 

  • Bisht GS, Awasthi AK, Dhole TN (2006) Antimicrobial activity of Hedychium spicatum. Fitoterapia 77(3):240–242

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2005) Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 12:592–602

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Soil biology, Vol 9, Springer Verlag, Berlin, Heidelberg, Germany, pp 281–298.

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB–GTC2402. Phytochemistry 96:370–377

    Google Scholar 

  • Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A (2008) Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order hypocreales. Arch Pharm Res 31:611

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109(7):3012–3043

    Article  CAS  PubMed  Google Scholar 

  • Cui JL, Guo TT, Ren ZX, Zhang NS, Wang ML (2015) Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10(3):e0118204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi LS, Joshi SR (2014) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37.

    Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95(8):914–924

    Article  PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5

    Article  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Desire MH, Bernard F, Forsah MR, Assang CT, Denis ON (2014) Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. Leaves. J Appl Biol Biotechnol 2(06):001–006

    Google Scholar 

  • Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Elsässer B, Krohn K, Flörke U, Root N, Aust HJ, Draeger S, Schulz B, Antus S, Kurtán T (2005) X-ray structure determination, absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 21:4563–4570

    Article  CAS  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed–borne Stagonospora spp. enhances reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16(7):580–587

    Article  CAS  PubMed  Google Scholar 

  • Faeth SH, Hamilton CE (2006) Does an asexual endophyte symbiont alter life stage and long–term survival in a perennial host grass? Microb Ecol 52(4):748–755

    Article  PubMed  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110(3):318–327

    Article  PubMed  Google Scholar 

  • Gao N, Shang ZC, Yu P, Luo J, Jian KL, Kong LY, Yang MH (2017) Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities. Chinese Chem Lett 28:109

    Article  CAS  Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41(4):369–383

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Goutam J, Sharma VK, Verma SK, Singh DK, Kumar J, Mishra A, Kumar A, Kharwar RN (2014) Optimization of culture conditions for enhanced production of bioactive metabolites rich in antimicrobial and antioxidant activities isolated from Emericella quadrilineata an endophyte of Pteris pellucida. J Pure Appl Microbiol 8(3):2059–2073

    CAS  Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1,3–dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59(14):2471–2476

    CAS  Google Scholar 

  • Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88(3):550–558

    Article  PubMed  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76(12):4063–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hol WG, de la Pena E, Moens M, Cook R (2007) Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic Appl Ecol 8(6):500–509

    Article  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2007a) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23(9):1253–1263

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007b) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61(1):14–30

    Article  CAS  Google Scholar 

  • Idris AM, Al–tahir I, Idris E (2013) Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt Acad J Biol Sci 5(1):1–9

    CAS  Google Scholar 

  • Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U (2010) Eremophilane type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod 73:683

    Article  CAS  PubMed  Google Scholar 

  • Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. J Agric Technol 7(6):1733–1741

    Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309

    Google Scholar 

  • Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh.(foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3(4):335–340

    Article  PubMed  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kumar PG, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:1–6

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9(3):245–251

    Article  CAS  PubMed  Google Scholar 

  • Li G, Kusari S, Golz C, Laatsch H, Strohmann C, Spiteller M (2017) Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J Nat Prod 80:983–988

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Liu S, Niu S, Guo L, Chen X, Che Y (2009) Isoprenylatedchromone derivatives from the plant endophytic fungus, Pestalotiopsis fici. J Nat Prod 72:1482

    Article  CAS  Google Scholar 

  • Majumder A, Jha S (2009) Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: an overview. J Biol Sci 1(1):46–69

    Google Scholar 

  • Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52(1):1–14

    Article  Google Scholar 

  • Mandyam K, Fox C, Jumpponen A (2012) Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie. Mycorrhiza 22(2):109–119

    Article  PubMed  Google Scholar 

  • Márquez LM, Redman RS, Rodríguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  CAS  PubMed  Google Scholar 

  • Márquez SS, Bills GF, Acuña LD, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41(1):115–123

    Article  Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  CAS  PubMed  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okigbo RN, Anuagasi CL, Amadi JE (2009) Advances in selected medicinal and aromatic plants indigenous to Africa. J Med Plants Res 3(2):086–095

    Google Scholar 

  • Pandya M, Naresh Kumar G, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vignaradiata root nodules. FEMS Microbiol Lett 348(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176(1):5–16

    Article  CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrew IA, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP, Maróstica MR Jr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro EA, Carvalho JM, dos Santos DC, Feitosa Ade O, Marinho PS, Guilhon GM, de Souza AD, da Silva FM, Marinho AM (2013) Antibacterial activity of alkaloids produced by fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res 27:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Pompeng P, Sommit D, Sriubolmas N, Ngamrojanavanich N, Matsubara K, Pudhom K (2013) Antiangiogenetic effects of anthranoids from Alternaria sp. an endophytic fungus in a Thai medicinal plant Erythrina variegata. Phytomedicine 20:918

    Article  CAS  PubMed  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU–D14. Phytochemistry 69(9):1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EH, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590

    Article  PubMed  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Riyaz–Ul–Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2010) Two new metabolites, epoxydinea and b, from Phoma sp. Helv Chim Acta 93(1):169–174

    Article  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from a endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini(L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  • Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15(1):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner MC (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot 29(113):97–133

    Article  Google Scholar 

  • Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rout SP, Choudary KA, Kar DM, Das L, Jain A (2009) Plants in traditional medicinal system–future source of new drugs. Int J Pharm Pharm Sci 1(1):1–23

    Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21(2):107–124

    Article  Google Scholar 

  • Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69(3):783–787

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21(2):67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343

    Article  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Div 41:101–113

    Article  Google Scholar 

  • Saleem M, Tousif MI, Riaz N, Ahmed I, Schulz B, Ashraf M, Nasar R, Pescitelli G, Hussain H, Jabbar A, Shafiq N, Krohn K (2013) Cryptosporioptide: a bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry 93:199–202

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Trad Comp Alt Med 8(1):1–10

    CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Senadeera SP, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2012) A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Org Biomol Chem 10:7220–7226

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Ahmad A, Parischa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Siddaiah CN, Satyanarayana NR, Mudili V, Gupta VK, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 8

    Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Spatafora JW, Bushley KE (2015) Phylogenomics and evolution of secondary metabolism in plant–associated fungi. Curr Opin Plant Biol 26:37–44

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–214

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2002) Microbial gifts from the rain forest. J Phytopathol 24:14–20

    Google Scholar 

  • Toghueo RMK, Eke P, Zabalgogeazcoa Í, de Aldana BRV, Nana LW, Boyom FF (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biol Conserv 96:8–20

    Google Scholar 

  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. https://doi.org/10.3389/fphar.2018.00309

  • Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131

    Article  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R (2014) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19(7):9760–9772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswambari Devi R, Doble M, Verma R (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunassays/sensors. Biosens Bioelectron 68:688–698

    Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23(1):79–83

    Article  CAS  Google Scholar 

  • Wani K, Shweta S, Pooja S, Pooja T (2016). Production of novel secondary metabolites from endophytic fungi by using fermentation process. Indo Am J Pharm Res 6(03)

    Google Scholar 

  • Wu H, Yang H, You X, Li Y (2012) Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int J Mol Sci 13(12):16255–16266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101(6):1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Yadav A, Yadav JP (2014) In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med 7:S256–S261

    Article  Google Scholar 

  • Zaferanloo B, Mahon PJ, Palombo EA (2012) Endophytes from medicinal plants as novel sources of bioactive compounds. Medicinal plants: diversity and drugs. Science Publisher: USA, 355–411

    Google Scholar 

  • Zhang Q, Wu J, Nguyen A, Wang BD, He P, Laurent GS, Su YA (2008) Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903 (+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis 13(8):993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang SQ, Tang HY, Li XJ, Zhang L, Xiao J, Gao YQ, Zhang AL, Gao JM (2013) Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain–many compounds method. J Agric Food Chem 61(47):11447–11452

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educ Trop Appl Microbiol Microbiol Biotechnol 1:567–576

    Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uzma, F., Mohan, C.D., Siddaiah, C.N., Chowdappa, S. (2019). Endophytic Fungi: Promising Source of Novel Bioactive Compounds. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_12

Download citation

Publish with us

Policies and ethics