Skip to main content

Endophytic Fungi: The Desired Biostimulants for Essential Oil Production

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytic fungi are organisms that reside asymptomatically in the tissues of higher plants without initiating any disease or overt negative symptoms in the host plants. This type of fungus acts as a biostimulant and uses living plant cells as a biofactory for the production of different desirable products. While promoting the production of secondary metabolites in host plants, endophytic fungi can also contribute to improving the development, fitness, and tolerances of host plants against abiotic and biotic stresses. However, their diverse distributions and populations are influenced by several factors, for example, genetic conditions, age, and the environmental conditions of their hosts. Nowadays, different types of endophytic fungi are currently used as biological agents to induce the formation of resinous substances in plants as a response to fungal infections, such as in the case of Aquilaria trees. Agarwood or resin wood is an important high-value product that is synthesized naturally as a result of certain fungal infections of Aquilaria trees. This resin is a high-value component in the manufacture of essential oils and perfumes. This review provides up-to-date information about the process and mechanism of agarwood resin production in Aquilaria trees as well as the best practices used in the sustainable production of this high-value product in Southeast Asia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam G, Wiesenberger G, Guldener U (2015) Fusarium mycotoxins and their role in plant–pathogen interactions. In: Zeilinger S, Martin JF, Garcia-Estrada C (eds) Biosynthesis and molecular genertics of fungal secondary metabolies, Fungal biology, vol 2. Springer, New York, pp 199–233

    Chapter  Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit MJ (2006) Preservation of ca. 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Eart Planet Sci Lett 241:707–722

    Article  CAS  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Bhore SJ, Preveena J, Kandasamy KI (2013) Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Pharm Res 5(2):134–137

    Google Scholar 

  • Blanchette RA (2006) The genus Gyrinops, is closely related to Aquilaria and in the past all species were considered to belong to Aquilaria. “Cultivated Agarwood—Training programs and Research in Papua New Guinea”, Forest Pathology and Wood Microbiology Research Laboratory, Department of Plant Pathology, University of Minnesota

    Google Scholar 

  • Chang YS, Nor Azah MA, Abu Said A, Lok EH, Reader S, Spiers A (2002) Gaharu. FRIM Tech Inf 69:1–7

    Google Scholar 

  • Chen H, Yang Y, Xue J, Wei J, Zhang Z, Chen H (2011) Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules 16(6):4884–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HQ, Wei JH, Yang JS, Zhang Z, Yang Y, Gao ZH, Sui C, Gong B (2012) Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem Biodivers 9(2):236–250

    Article  CAS  PubMed  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, New York, p 241

    Book  Google Scholar 

  • Chhipa H, Kaushik N (2017) Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front Microbiol 8:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong SP, Osman MF, Bahari N, Nuri EA, Zakaria R, Abdul-Rahim K (2015) Agarwood inducement technology: a method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J Agrobiotech 6:1–16

    Google Scholar 

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal lant Ocimum sanctum Linn. PLoS One 10(11):e0141444. https://doi.org/10.1371/journal.pone.0141444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury M, Hussain D, Chung S, Kabir H, Rahman A (2016) Agarwood manufacturing: a multidisciplinary opportunity for economyof Bangladesh—a review. Agric Eng Int CIGR J 18:171–177

    Google Scholar 

  • Chowdhury M, Rahman A, Hussain MD, Kabir E (2017) The economic benefit of agarwood production through aeration method into the Aquilaria malaccensis tree in Bangladesh. Bangladesh J Agric 42:191–196

    Article  Google Scholar 

  • Compton JGS, Zich FA (2002) Gyrinops ledermannii (Thymelaeaceae), being an agarwood-producing species prompts call for further examination of taxonomic implications in the generic delimitation between Aquilaria and Gyrinops. Flora Malesiana Bull 13:61–65

    Google Scholar 

  • Cui J, Guo S, Fu S, Xiao P, Wang M (2013) Effects of inoculating fungi on agilawood formation in Aquilaria sinensis. Chin Sci Bull 58:3280–3287

    Article  CAS  Google Scholar 

  • Dai HF, Liu J, Zen YB, Wang H, Mei WI (2009) Two new 2-(2-phenylethyl) chromones from Chinese eaglewood. J Asian Nat Prod Res J 12:134–137

    Article  CAS  Google Scholar 

  • Deka D, Tayung K, Jha DK (2017) Harnessing fungal endophytes for plant and human health. In: Maheshwari DK (ed) Endophytes: biology and biotechnology. Springer, Cham, pp 59–98

    Chapter  Google Scholar 

  • Donovan DG, Puri RK (2004) Learning from traditional knowledge of non-timber forest products: Penan Benalui and the autecology of Aquilaria in Indonesian Borneo. Ecol Soc 9(3):3

    Article  Google Scholar 

  • Du Jardin P (2015) Plant biostimulants : Definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Espinoza EO, Lancaster CA, Kreitals NM, Hata M, Cody RB, Blanchette RA (2014) Distinguishing wild from cultivated agarwood (Aquilaria spp.) using direct analysis in real time and time of-flight mass spectrometry. Rapid Commun Mass Spect 28(3):281–289

    Article  CAS  Google Scholar 

  • Eurlings MC, van Beek HH, Gravendeel B (2010) Polymorphic microsatellites for forensic identification of agarwood (Aquilaria crassna). Forensic Sci Int 197(3):30–34

    Article  CAS  PubMed  Google Scholar 

  • Faizal A, Esyanti RR, Aulianisa EN, Iriawati, Santoso E, Turjaman M (2017) Formation of agarwood from Aquilaria malaccensis in response to inoculation of local strains of Fusarium solani. Trees 31:189–197

    Article  Google Scholar 

  • Gerard AP (2007) Agarwood: the life of a wounded tree. IIAS Newsletter 45: 24–25

    Google Scholar 

  • Gibson I (1977) The role of fungi in the origin of oleoresin deposits (Agaru) in the wood of Aquilaria agallocha Roxb. Bano Biggan Patrika 6:16–26

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashim YZH-Y, Kerr PG, Abbas P, Salleh HM (2016) Aquilaria spp. (Agarwood) as source of health beneficial compound: a review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol 189:331–360

    Google Scholar 

  • Herber BE (2003) Thymelaeaceae. In: The families and genera of vascular plants. Flowering plants dicotyledons (malvales, capparales and non betalain caryophyllales). Berlin: Springer, pp 373–438

    Google Scholar 

  • Huang JQ, Wei JH, Zhang Z, Yang Y, Liu YY, Meng H, Zhang XL, Zhang JL (2013) Historical records and modern studies on agarwood production method and overall agarwood production method. Zhongguo Zhong Yao Za Zhi 38:302–306

    PubMed  Google Scholar 

  • Ismail N, Mohd Ali NA, Jamil M, Fazalul Rahiman MH, Tajuddin SN, Tain MN (2013) Analysis of high quality agarwood oil chemical compounds by means of spme/gc-ms and z-score technique. Malaysian J Anal Sci 17(3):403–413

    Google Scholar 

  • Jayaraman S, Mohamed R (2015) Crude extract of Trichoderma elicits agarwood substances in cell suspension culture of the tropical tree, Aquilaria malaccensis Lam. Turk J Agric For 39:163–173

    Google Scholar 

  • Jia M, Chen L, Xin H-L, Zheng C-J, Rahman K, Han T (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 9:906–920

    Google Scholar 

  • Karimi I, Becker LA, Chalechale A, Ghashghaii A (2012) Biochemical plasma profile of male rats exposed to smoke of agarwood (Aquilaria spp.). Comp Clin Pathol 21:1053–1058

    Article  CAS  Google Scholar 

  • Kiet LC, Kessler PJA, Eurlings MCM (2005) A new species of Aquilaria (Thymelaeaceae) in Vietnam. Blumea-Biodivers Evol Biogeogr Plants 50(1):135–141

    Article  Google Scholar 

  • Konishi T, Konoshima T, Shimada Y, Kiyosawa S (2002) Six new 2-(2-phenylethyl) chromones from agarwood. Chem Pharm Bull 50:419–422

    Article  CAS  PubMed  Google Scholar 

  • Kumeta Y, Ito M (2010) Characterization of delta-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol 154:1998–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster C, Espinoza E (2012) Evaluating agarwood products for 2-(2-phenylethyl) chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 26(23):2649–2656

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Rozi M (2016) The origin and domestication of Aquilaria, an important agarwood-producing genus. In: Mohamed R (ed) Agarwood. Springer, Singapore, pp 1–20

    Google Scholar 

  • Li DL, Chen YC, Tao MH, Li HH, Zhang WM (2012) Two new octahydro naphthalene derivatives from Trichoderma spirale, an endophytic fungus derived from Aquilaria sinensis. Helv Chim Acta 95(5):805–809

    Article  CAS  Google Scholar 

  • Li D, Chen Y, Pan Q, Tao M, Zhang W (2014) A new eudesmane sesquiterpene from Nigrospora oryzae, an endophytic fungus of Aquilaria sinensis. Rec Nat Prod 8:330–333

    Google Scholar 

  • Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Gao Z (2013) Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 18(3):3086–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Wei JH, Gao Z, Zhang Z, Lyu J-C (2017) A review of quality assessment and grading for agarwood. Chin Herbal Med 9:22–30

    Article  Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. https://doi.org/10.1371/journal.pone.0186234

    Article  CAS  Google Scholar 

  • Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer, Basel, pp 1–35. https://doi.org/10.1007/978-3-319-34106-4_1

    Chapter  Google Scholar 

  • Mohamed R, Jong PL, Kamziah AK (2014a) Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J For Res 25:201–204

    Article  CAS  Google Scholar 

  • Mohamed R, Jong PL, Nurul Irdayu I (2014b) Succession patterns of fungi associated to wound-induced agarwood in wild Aquilaria malaccensis revealed from quantitative PCR assay. World J Microbiol Biotechnol 30:2427–2436

    Article  CAS  PubMed  Google Scholar 

  • Monggoot S, Popluechai S, Gentekaki E, Pripdeevech P (2017) Fungal endophytes: an alternative source for production of volatile compounds from agarwoodoil of Aquilaria subintegra. Microb Ecol 5:1–8

    Google Scholar 

  • Mucharommah (2011) Development of eaglewood (gaharu) in Bengkulu, Sumatera. In: Turjaman M (eds) Proceeding of gaharu workshop: development of gaharu production technology, a forest community based empowerment. Indonesia’s Work Programme for ITTO PD425/06 Rev.1 (I), Indonesia, pp 134

    Google Scholar 

  • Murphy BR (2013) Fungal endophytes of barley roots—friend and foe? In: Endophytes for plant protection: the state of art. Braunschweig, Deutsche Phytomed Gesellschaft, pp 102–116

    Google Scholar 

  • Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Frag J 26(2):73–89

    Article  CAS  Google Scholar 

  • Ng LT, Chang YS, Kadir AA (1997) A review on agar (gaharu) producing Aquilaria species. J Trop Forest Prod 2:272–285

    Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2011) Actinobacterial community and diversity in rhizosphere soils of Aquilaria crassna Pierre ex Lec assessed by RT-PCR and PCR-DGGE. Biochem Syst Ecol 39:509–519

    Article  CAS  Google Scholar 

  • Nobuchi T, Siripatanadilok SA (2008) The formation of wood in tropical forest trees: a challenge from the perspective of functional wood anatom. In: Zimmerman MH (ed) Cytological observations of Aquilaria crassna wood associated with the formation of aloes-wood. UPM Press, Serdang, pp 147–160

    Google Scholar 

  • Nor Azah MA, Husni SS, Mailina J, Sahrim L, Abdul Majid J, Mohd Faridz Z (2013) Classification of agarwood (gaharu) by resin content. J Trop Forest Sci 25:213–219

    Google Scholar 

  • Novriyanti E, Santosa E, Syafii W, Turjaman M, Sitepu IR (2010) Anti-fungal activity of wood extract of Aquilaria crassna Pierre ex Lecomte against agarwood-inducing fungi, Fusarium solani. Indones J Res 7:155–165

    Google Scholar 

  • Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol 26(3):307–315

    Article  CAS  Google Scholar 

  • Pasaribu G, Waluyo TK, Pari G (2013) Analisys of chemical compound in some of agarwood quality by gas chromatography mass spectrometry. J For Res Prod Res 31(3):181–185

    Google Scholar 

  • Peng CS, Osman MF, Bahar N, Nuri EAK, Zakaria R, Rahim KA (2015) Agarwood inducement technology: a method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J Agrobiotechnol 6:1–16

    Google Scholar 

  • Pojanagaroon S, Kaewrak C (2006) Mechanical methods to stimulate aloes wood formation in Aquiliria crassna Pierre ex H Lec (kritsana) trees. ISHS Acta Hort 676:161–166

    Google Scholar 

  • Putri N, Karlinasari L, Turjaman M, Wahyudi I, Nandika D (2017) Evaluation of incense-resinous wood formation in agarwood (Aquilaria malaccensis Lam.) using sonic tomography. Agric Nat Res 51:84–90

    Google Scholar 

  • Rasool S, Mohamed R (2016) Understanding agarwood formation and its challenges. In: Mohamed R (ed) Agarwood: tropical forestry. Springer, Singapore, pp 39–56

    Chapter  Google Scholar 

  • Regula N (2010) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr J 26:73–87

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Sangareswari@Nagajothi M, Thangamuthu Parthiban K, Umesh Kanna S, Karthiba L, Saravanakumar D (2016) Fungal microbes associated with agarwood formation. AJPS 7:1–8

    Article  CAS  Google Scholar 

  • Santoso E (2013) Agarwood formation by fungal bioinduction technology. In: Susmianto A, M Turjaman, Setio P (eds). Track record: agarwood inoculation technology. FORDA Press, Bogor Indonesia, pp 22-66

    Google Scholar 

  • Sen S, Dehingia M, Talukdar NC, Khan M (2017) Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions. Sci Rep 7:44406. https://doi.org/10.1038/srep44406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitepu IR, Santoso E, Siran SA, Turjaman M (2011) Fragrant wood gaharu: when the wild can no longer provide. ITTO and FORDA, Bogor, pp 1–67

    Google Scholar 

  • Suharti SP, Pratiwi E, Santosa, Turjaman M (2011) Feasibility study of business in garwood inoculation at diffrent stem diameters and inoculation periods. Indon J Res 8:114–129

    Article  Google Scholar 

  • Tamuli P, Boruah P, Nath SC, Leclercq P (2005) Essential oil of eaglewood tree: a product of pathogenesis. J Ess Oil Res 17(6):601–604

    Article  CAS  Google Scholar 

  • Tamuli P, Baruah P, Samanta R (2008) Enzyme activities of agarwood (Aquilaria malaccensis Lamk.) stem under pathogenesis. J Spices Arom Crop 17(3):240–243

    Google Scholar 

  • Tian JJ, Gao XX, Zhang WM, Wang L, Qu LH (2013) Molecular identification of endophytic fungi from Aquilaria sinensis and artificial agarwood induced by pinholes-infusion technique. Afr J Biotechnol 12(21):3115–3131

    CAS  Google Scholar 

  • Turjaman M, Hidayat A, Santoso E (2016) Development of agarwood induction technology using endophytic fungi. In: Mohamed R (ed) Agarwood. Springer, Singapore, pp 57–71

    Chapter  Google Scholar 

  • Wong YF, Chin ST, Perlmutter P, Marriott PJ (2015) Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant-fungus interaction in Aquilaria malaccensis. J Chromatogr A 1387:104–115

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z et al (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilariasinensis. BMC Genom 14:227

    Article  CAS  Google Scholar 

  • Xu Y-H, Liao Y-C, Zhang Z, Liu J, Sun P-W, Gap Z-H et al (2016) Jasmonic acid is a crucial signal transducer in heat shock-induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 6:21843. https://doi.org/10.1038/srep21843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T (1992) Biochemistry of gymnosperm xylem responses to fungal invasion. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi. Springer, Heidelberg, pp 199–233

    Google Scholar 

  • Yang L, Qiao C, Xie D, Gong NB, Lu Y, Zhang J, Dai J, Guo S (2013) Antidepressant abietane diterpenoids from chinese eaglewood. J Nat Prod 76:216–222

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yang Y, Meng H, Sui CH, Wei JH, Chen HQ (2010) Advances in studies on mechanism of agarwood formation in Aquilaria sinensis and its hypothesis of agarwood formation induced by defense response. Chin Trad Herbal Drugs 41:156–159

    Google Scholar 

  • Zhang XL, Liu YY, Wei JH, Yang Y, Zhang Z, Huang JQ et al (2012) Production of high-quality agarwood in Aquilaria sinensis trees via whole-tree agarwood-induction technology. Chin Chem Lett 23:727–730

    Article  CAS  Google Scholar 

  • Zhang Z, Wei J, Han X, Liang L, Yang Y, Meng H, Xu Y, Gao Z (2014a) The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis (Lour.) Gilg trees induced by wounding treatments without variation of microbial communities. Int J Mol Sci 15:23589–235603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Zhang X, Yang Y, Wei JH, Meng H, Meng ZH et al (2014b) Hydrogen peroxide induces vessel occlusions and stimulates sesquiterpenes accumulation in stems of Aquilaria sinensis. Plant Growth Regul 72:81–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham A. El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Enshasy, H.A., Hanapi, S.Z., Malek, R.A., Abdelgalil, S.A., Leng, O.M. (2019). Endophytic Fungi: The Desired Biostimulants for Essential Oil Production. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_10

Download citation

Publish with us

Policies and ethics