Dynamic Airspace Sectorization Problem Using Hybrid Genetic Algorithm

  • Mohammed GabliEmail author
  • El Miloud Jaara
  • El Bekkaye Mermri
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 111)


In this paper, we are interested in a dynamic airspace sectorization problem (ASP) with constraints. The objective is to minimize the coordination workload between adjacent sectors and to balance the workload across the sectors. We modeled this problem in the form of multi-objective optimization problem that can be transformed into a mono-objective problem with dynamic weights between the objective functions. To solve the ASP problem we used a hybrid genetic algorithm. The proposed model is illustrated by a numerical example from a real life problem.


Airspace sectorization Multi-objective optimization Hybrid genetic algorithm 


  1. 1.
    Babic, O., Kristic, T.: Airspace daily operational sectorization by fuzzy logic. Fuzzy Sets Syst. 116, 49–64 (2000)CrossRefGoogle Scholar
  2. 2.
    Allignol, C.: Planification de trajectoires pour l’optimisation du trafic aerien. Ph.D. thesis, INP Toulouse (2011)Google Scholar
  3. 3.
    Kumar, K.: ART1 neural networks for air space sectoring. Int. J. Comput. Appl. 37, 20–24 (2012)Google Scholar
  4. 4.
    Riley, V., Chatterji, G., Johnson, W., Mogford, R., Kopardekar, P., Sieira, E., Landing, M., Lawton, G.: Pilot Perceptions of Airspace Complexity. Part 2, Digital Avionics Systems Conference DASC 04. IEEE (2004)Google Scholar
  5. 5.
    Trandac, H., Baptiste, P., Duong, V.: Optimized sectorization of airspace with constraints. In: The 5th USA/Europe ATM R&D Seminar, Budapest, pp. 23–27 (2003)Google Scholar
  6. 6.
    Delahaye, D., Schoenauer, M., Alliot, J.M.: Airspace sectoring by evolutionary computation. In: IEEE International Congress on Evolutionary Computation (1998)Google Scholar
  7. 7.
    Delahaye, D., Puechmorel, S.: 3D airspace sectoring by evolutionary computation, real world applications. In: GECCO 06 Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1637–1644 (2006)Google Scholar
  8. 8.
    Trandac, H., Baptiste, P., Duong, V.: Airspace sectorization with constraints. RAIRO Oper. Res. 39(2), 105–122 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yousefi, A., Donohue, G.L., Qureshi, K.M.: Investigation of en route metrics for model validation and airspace design using the total airport and airspace modeler. In: The 5th EUROCONTROL/FAA ATM R&D Conference, Budapest (2003)Google Scholar
  10. 10.
    Bichot, C.E., Durand, N.: A tool to design functional airspace blocks. In: Proceedings of ATM, the 7th USA/Europe R&D Seminar on Air Trafic Management, pp. 169–177 (2007)Google Scholar
  11. 11.
    Brinton, C.R., Leiden, K., Hinkey, J.: Airspace sectorization by dynamic density. In: Proceedings of the 9th AIAA Aviation Technology, Integration and Operations (ATIO) Forum, American Institute of Aeronautics and Astronautics (2009)Google Scholar
  12. 12.
    Gianazza, D.: Forecasting workload and airspace configuration with neural networks and tree search methods. Artif. Intell. 174, 530–549 (2010)CrossRefGoogle Scholar
  13. 13.
    Basu, A., Mitchell, J.S.B., Sabhnani, G.: Geometric algorithms for optimal airspace design and air traffic controller workload balancing. J. Exp. Algorithmics 14(3) (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kicinger, R., Yousefi, A.: Heuristic method for 3D airspace partitioning: genetic algorithm and agent-based approach. In: 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO) and Aircraft Noise and Emissions Reduction Symposium (ANERS) (2009)Google Scholar
  15. 15.
    Xue, M.: Airspace sector redesign based on voronoi diagrams. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Honolulu, HI (2008)Google Scholar
  16. 16.
    Bichot, C.E.: Elaboration d’une nouvelle metaheuristique pour le partitionnement de graphe: la methode de fusion-fission. Application au decoupage de l’espace aerien. Ph.D. thesis, INP Toulouse (2007)Google Scholar
  17. 17.
    Tang, J.: Large scale multi-Objective optimization for dynamic airspace sectorization. Ph.D. thesis, University of New South Wales (2012)Google Scholar
  18. 18.
    Gabli, M., Jaara, E.M., Memri, E.B.: Planning UMTS base station location using genetic algorithm with a dynamic trade-off parameter. Lecture Notes in Computer Science, vol. 7853, pp. 120–134 (2013)Google Scholar
  19. 19.
    Gabli, M., Jaara, E.M., Memri, E.B.: A genetic algorithm approach for an equitable treatment of objective functions in multi-objective optimization problems. IAENG Int. J. Comput. Sci. 41(2), 102–111 (2014)Google Scholar
  20. 20.
    Holland, J.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 9, 297–314 (1962)CrossRefGoogle Scholar
  21. 21.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. First ed. Addison-Wesley (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammed Gabli
    • 1
    • 2
    Email author
  • El Miloud Jaara
    • 1
    • 2
  • El Bekkaye Mermri
    • 1
    • 3
  1. 1.Faculty of ScienceUniversity Mohammed PremierOujdaMorocco
  2. 2.Department of Computer Science, Laboratory of Research in Computer Science (LARI)OujdaMorocco
  3. 3.Department of Mathematics, Laboratory of Arithmetic, Scientific Computing and Applications (LACSA)OujdaMorocco

Personalised recommendations