Security Scheme for IoT Environments in Smart Grids

  • Sebastián Cruz-DuarteEmail author
  • Marco Sastoque-Mahecha
  • Elvis Gaona-García
  • Paulo Gaona-García
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 111)


The following paper proposes a security scheme applied to Smart Grids, using different security mechanisms to comply with confidentiality, authentication, and integrity aspects in a grid implemented with Raspberry Pi 3 nodes. The study presents the evaluation of different encryption modes to establish the final parameters in the construction of a security scheme, satisfying NTC 6079 specified requirements for smart grids infrastructure based on metric comparison developed on various performance criteria.


Cyber security Confidentiality Integrity Authentication Smart grids IoT Encryption 



This work was supported by COLCIENCIAS with the project entitled “Low and Medium capacity battery charger with low current THD, high power factor and high efficiency for electric vehicles” and GITUD research group.


  1. 1.
    NTC 6079: Requisitos para sistemas de infraestructura de medición avanzada (ami) en redes de distribución de energía eléctrica. ICONTECGoogle Scholar
  2. 2.
    Rihan, S.D., Khalid, A., Osman, S.E.F.: A performance comparison of encryption algorithms AES and DES. Int. J. Eng. Res. Technol. IJERT 4(12), 151–154 (2015)Google Scholar
  3. 3.
    Rani, H.M.S., Mittal, D.H., Director, S.: A compound algorithm using neural and AES for encryption and compare it with RSA and existing AES. J. Netw. Commun. Emerg. Technol. JNCET 3(1) (2015)Google Scholar
  4. 4.
    Laue, R., Kelm, O., Schipp, S., Shoufan, A., Huss, S.A.: Compact AES-based architecture for symmetric encryption, hash function, and random number generation. In: International Conference Field Programmable Logic and Applications, FPL 2007, pp. 480–484 (2007)Google Scholar
  5. 5.
    Mahajan, P., Sachdeva, A.: A study of encryption algorithms AES, DES and RSA for security. Glob. J. Comput. Sci. Technol. (2013)Google Scholar
  6. 6.
    Alahmadi, A., Abdelhakim, M., Ren, J., Li, T.: Defense against primary user emulation attacks in cognitive radio networks using advanced encryption standard. IEEE Trans. Inf. Forensics Secur. 9(5), 772–781 (2014)CrossRefGoogle Scholar
  7. 7.
    Liu, B., Baas, B.M.: Parallel AES encryption engines for many-core processor arrays. IEEE Trans. Comput. 62(3), 536–547 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Masoumi, M., Rezayati, M.H.: Novel approach to protect advanced encryption standard algorithm implementation against differential electromagnetic and power analysis. IEEE Trans. Inf. Forensics Secur. 10(2), 256–265 (2015)CrossRefGoogle Scholar
  9. 9.
    Liu, Q., Xu, Z., Yuan, Y.: High throughput and secure advanced encryption standard on field programmable gate array with fine pipelining and enhanced key expansion. IET Comput. Digit Tech. 9(3), 175–184 (2015)CrossRefGoogle Scholar
  10. 10.
    Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J. Commun. Netw. 18(3), 273–287 (2016)CrossRefGoogle Scholar
  11. 11.
    Sarika, S., Pravin, A., Vijayakumar, A., Selvamani, K.: Security issues in mobile ad hoc networks. Procedia Comput. Sci. 92, 329–335 (2016)CrossRefGoogle Scholar
  12. 12.
    Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 1–18 (2009)Google Scholar
  13. 13.
    Eder-Neuhauser, P., Zseby, T., Fabini, J., Vormayr, G.: Cyber attack models for smart grid environments. Sustain. Energy Grids Netw. 12, 10–29 (2017)CrossRefGoogle Scholar
  14. 14.
    Krawczyk, H., Canetti, R., Bellare, M.: HMAC: keyed-hashing for message authentication (1997)Google Scholar
  15. 15.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Annual International Cryptology Conference, pp. 1–15 (1996)Google Scholar
  16. 16.
    Yung, M., Lin, D., Liu, P.: Information Security and Cryptology: 4th International Conference, Inscrypt 2008, Beijing, China, 14–17 December 2008, Revised Selected Papers. Springer Science & Business Media (2009)Google Scholar
  17. 17.
    Rescorla, E.: SSL and TLS: Designing and Building Secure Systems, vol. 1. Addison-Wesley, Reading (2001)Google Scholar
  18. 18.
    Fei, P., Shui-Sheng, Q., Min, L.: A secure digital signature algorithm based on elliptic curve and chaotic mappings. Circ. Syst. Signal Process. 24(5), 585–597 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Somsuk, K., Thammawongsa, N.: Applying d-RSA with login system to speed up decryption process in client side. In: IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), pp. 1–5 (2017)Google Scholar
  20. 20.
    Moriarty, K., Kalisky, B., Jonsson, J., Rusch, A.: PKCS #1: RSA Cryptography Specifications Version 2.2. RFC 8017 (2016)Google Scholar
  21. 21.
    Mahajan, P., Sachdeva, A.: A study of encryption AES, DES, and RSA for security. Global J. Comput. Sci. Technol. Netw., Web Secur. (2013)Google Scholar
  22. 22.
    Khalid, A.: A performance comparison of encryption algorithms AES and DES. Int. J. Eng. Res. Technol. (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sebastián Cruz-Duarte
    • 1
    Email author
  • Marco Sastoque-Mahecha
    • 1
  • Elvis Gaona-García
    • 1
  • Paulo Gaona-García
    • 1
  1. 1.Faculty of EngineeringUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations