Comparative Performance Study of QoS Downlink Scheduling Algorithms in LTE System for M2M Communications

  • Mariyam OuaissaEmail author
  • Abdallah Rhattoy
  • Mohamed Lahmer
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 111)


The introduction of Machine to Machine (M2M) communications in future cellular networks will be subject to considerable degradation in the performance of existing traditional Human to Human (H2H) applications. However, with the ever increasing data traffic, resource allocation and traffic management, while maintaining quality of service, are a major challenge in terms of terminal fairness and throughput. In this paper we are interested in the allocation of radio resources in downlink Long Term Evolution (LTE) network including a comparative study between six scheduling algorithms which are: Proportional Fair (PF), Exponential Proportional Fair (EXP/PF), Maximum Largest Weighted Delay First (MLWDF), Frame Level Scheduler (FLS), Exponential Rule (EXP-RULE) and Logarithmic Rule (LOG-RULE). We considered the real-time flows (video and voip) in terms of throughput, goodput, fairness index and spectral efficiency, in order to have a clearer view of the quality of experience provided by these algorithms.


M2M H2H LTE Scheduling algorithms Resource allocation Fairness Goodput Spectral efficiency 


  1. 1.
    Kim, J., Lee, J., Kim, J., Yun, J.: M2M service platforms: survey, issues, and enabling technologies. IEEE Commun. Surv. Tutor. 16(1), 61–76 (2014)CrossRefGoogle Scholar
  2. 2.
    Taleb, T., Kunz, A.: Machine type communications in 3GPP networks: potential, challenges and solutions. Commun. Mag. 50(3), 178–184 (2012)CrossRefGoogle Scholar
  3. 3.
    Biral, A., Centenaro, M., Zanellan, A., Vangelista, L., Zorzi, M.: The challenges of M2M massive access in wireless cellular networks. Digit. Commun. Netw. 1, 1–19 (2015)CrossRefGoogle Scholar
  4. 4.
    Ghavimi, F., Chen, H.H.: M2M communications in 3GPP LTE/LTE-A networks: architectures, service requirements, challenges, and applications. IEEE Commun. Surv. Tutor. 17, 525–549 (2014)CrossRefGoogle Scholar
  5. 5.
    Zheng, K., Hu, F., Xiangy, W., Dohler, M., Wang, W.: Radio resource allocation in LTE-A cellular networks with M2M communications. IEEE Commun. Mag. 50, 184–192 (2012)CrossRefGoogle Scholar
  6. 6.
    Fritze, G.: SAE: The Core Network for LTE (2012)Google Scholar
  7. 7.
    Coupechoux, M., Martins, P.: Vers les systèmes radio mobiles de 4e génération - de l’UMTS au LTE (2013)Google Scholar
  8. 8.
    Bouguen, Y., Hardouin, E., Wolff, F.X.: LTE et les réseaux 4G (2012)Google Scholar
  9. 9.
    Monikandan, S.B., Sivasubramanian, A., Babu, S.P.K.: A review of MAC scheduling algorithms in LTE system. Int. J. Adv. Sci. Eng. Inf. Technol. 3, 1056–1068 (2017)CrossRefGoogle Scholar
  10. 10.
    Piro, G., Grieco, L.A., Boggia, G., Capozzi, F., Camarda, P.: Simulating LTE cellular systems: an open source framework. IEEE Trans. Veh. Technol. 60(2), 498–513 (2010)CrossRefGoogle Scholar
  11. 11.
    Fouziya, S.S., Nakkeeran, R.: Study of downlink scheduling algorithms in LTE networks. J. Netw. 9(12), 3381 (2014)Google Scholar
  12. 12.
    Sahibzada, A.M., Khan, F., Ali, M., Khan, G.M, Faqir, Z.Y.: Fairness evaluation of scheduling algorithms for dense M2M implementations In: IEEE WCNC 2014 - Workshop on IoT Communications and Technologies (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariyam Ouaissa
    • 1
    Email author
  • Abdallah Rhattoy
    • 2
  • Mohamed Lahmer
    • 2
  1. 1.Research Team: ISIC High School of Technology, LMMI Laboratory ENSAMMoulay-Ismail UniversityMeknesMorocco
  2. 2.Department of Computer Engineering High School of TechnologyMoulay-Ismail UniversityMeknesMorocco

Personalised recommendations