Skip to main content

Spectral Design of Signal-Adapted Tight Frames on Graphs

  • Chapter
  • First Online:
Vertex-Frequency Analysis of Graph Signals

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Analysis of signals defined on complex topologies modeled by graphs is a topic of increasing interest. Signal decomposition plays a crucial role in the representation and processing of such information, in particular, to process graph signals based on notions of scale (e.g., coarse to fine). The graph spectrum is more irregular than for conventional domains; i.e., it is influenced by graph topology, and, therefore, assumptions about spectral representations of graph signals are not easy to make. Here, we propose a tight frame design that is adapted to the graph Laplacian spectral content of a given class of graph signals. The design exploits the ensemble energy spectral density, a notion of spectral content of the given signal set that we determine either directly using the graph Fourier transform or indirectly through approximation using a decomposition scheme. The approximation scheme has the benefit that (i) it does not require diagonalization of the Laplacian matrix, and (ii) it leads to a smooth estimate of the spectral content. A prototype system of spectral kernels each capturing an equal amount of energy is defined. The prototype design is then warped using the signal set’s ensemble energy spectral density such that the resulting subbands each capture an equal amount of ensemble energy. This approach accounts at the same time for graph topology and signal features, and it provides a meaningful interpretation of subbands in terms of coarse-to-fine representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The data are publicly available at http://pems.dot.ca.gov.

  2. 2.

    The data are publicly available at https://openfmri.org/dataset/ds000102.

References

  1. H. Behjat, N. Leonardi, L. Sörnmo, D. Van De Ville, Canonical cerebellar graph wavelets and their application to fMRI activation mapping, in Proceedings of the IEEE International Conference of the Engineering in Medicine and Biology Society (2014), pp. 1039–1042

    Google Scholar 

  2. H. Behjat, N. Leonardi, L. Sörnmo, D. Van De Ville, Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping. Neuroimage 123, 185–199 (2015)

    Article  Google Scholar 

  3. H. Behjat, N. Leonardi, D. Van De Ville, Statistical parametric mapping of functional MRI data using wavelets adapted to the cerebral cortex, in Proceedings of the International Symposium on Biomedical Imaging (2013), pp. 1070–1073

    Google Scholar 

  4. H. Behjat, U. Richter, D. Van De Ville, L. Sörnmo, Signal-adapted tight frames on graphs. IEEE Trans. Signal Process. 64(22), 6017–6029 (2016)

    Article  MathSciNet  Google Scholar 

  5. J. Benedetto, M. Fickus, Finite normalized tight frames. Adv. Comput. Math. 18(2), 357–385 (2003)

    Article  MathSciNet  Google Scholar 

  6. M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  7. S. Chen, R. Varma, A. Sandryhaila, J. Kovačević, Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)

    Article  MathSciNet  Google Scholar 

  8. F. Chung, Spectral Graph Theory (AMS, Providence, 1997)

    MATH  Google Scholar 

  9. M.K. Chung, S.M. Robbins, K.M. Dalton, R.J. Davidson, A.L. Alexander, A.C. Evans, Cortical thickness analysis in autism with heat kernel smoothing. Neuroimage 25(4), 1256–1265 (2005)

    Article  Google Scholar 

  10. R.R. Coifman, M. Maggioni, Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)

    Article  MathSciNet  Google Scholar 

  11. M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Advances in Neural Information Processing Systems (2016), pp. 3844–3852

    Google Scholar 

  12. J. Diedrichsen, J.H. Balsters, J. Flavell, E. Cussans, N. Ramnani, A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1), 39–46 (2009)

    Article  Google Scholar 

  13. B. Dong, Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput. Harmon. Anal. (2015). https://doi.org/10.1016/j.acha.2015.09.005

  14. M. Fiedler, Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  15. F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  Google Scholar 

  16. M. Gavish, B. Nadler, R.R. Coifman, Multiscale wavelets on trees, graphs and high dimensional data: theory and applications to semi supervised learning, in Proceedings of the International Conference on Machine Learning (2010), pp. 367–374

    Google Scholar 

  17. M. Girvan, M.E. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  18. F. Göbel, G. Blanchard, U. von Luxburg, Construction of tight frames on graphs and application to denoising (2014), http://arXiv.org/abs/1408.4012

  19. D.J. Hagler Jr., A.P. Saygin, M.I. Sereno, Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33(4), 1093–1103 (2006)

    Article  Google Scholar 

  20. D. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  21. W. Huang, T.A.W. Bolton, J.D. Medaglia, D.S. Bassett, A. Ribeiro, D.V.D. Ville, A graph signal processing perspective on functional brain imaging. Proc. IEEE 106(5), 868–885 (2018). https://doi.org/10.1109/JPROC.2018.2798928

    Article  Google Scholar 

  22. M. Jansen, G.P. Nason, B.W. Silverman, Multiscale methods for data on graphs and irregular multidimensional situations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71(1), 97–125 (2009)

    Google Scholar 

  23. F.I. Karahanoğlu, D. Van De Ville, Dynamics of large-scale fMRI networks: deconstruct brain activity to build better models of brain function. Curr. Opin. Biomed. Eng. 3, 28–36 (2017). https://doi.org/10.1016/j.cobme.2017.09.008

    Article  Google Scholar 

  24. A.M.C. Kelly, L.Q. Uddin, B.B. Biswal, F.X. Castellanos, M.P. Milham, Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1), 527–537 (2008)

    Article  Google Scholar 

  25. S.J. Kiebel, R. Goebel, K.J. Friston, Anatomically informed basis functions. Neuroimage 11(6), 656–667 (2000)

    Article  Google Scholar 

  26. N. Leonardi, D. Van De Ville, Tight wavelet frames on multislice graphs. IEEE Trans. Signal Process. 61(13), 3357–3367 (2013)

    Article  MathSciNet  Google Scholar 

  27. N. Logothetis, B. Wandell, Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004)

    Article  Google Scholar 

  28. Y. Meyer, Principe d’incertitude, bases hilbertiennes et algebres d’operateurs. Seminaire Bourbaki (in French) 662, 209–223 (1986)

    Google Scholar 

  29. S.K. Narang, A. Ortega, Lifting based wavelet transforms on graphs, in Proceedings of the APSIPA ASC (2009), pp. 441–444

    Google Scholar 

  30. S.K. Narang, A. Ortega, Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)

    Article  MathSciNet  Google Scholar 

  31. M. Newman, Networks (OUP, Oxford, 2010)

    Google Scholar 

  32. A. Ortega, P. Frossard, J. Kovac̆ević, J.M.F. Moura, P. Vandergheynst, On the optimality of ideal filters for pyramid and wavelet signal approximation. Proc. IEEE 106(5), 808–828 (2018)

    Google Scholar 

  33. S. Ozkaya, D. Van De Ville, Anatomically adapted wavelets for integrated statistical analysis of fMRI data, in Proceedings of the IEEE International Symposium on Biomedical Imaging, Chicago, IL (2011), pp. 469–472

    Google Scholar 

  34. I. Ram, M. Elad, I. Cohen, Generalized tree-based wavelet transform. IEEE Trans. Signal Process. 59(9), 4199–4209 (2011)

    Article  MathSciNet  Google Scholar 

  35. I. Ram, M. Elad, I. Cohen, Redundant wavelets on graphs and high dimensional data clouds. IEEE Signal Process. Lett. 19(5), 291–294 (2012)

    Article  Google Scholar 

  36. R. Rustamov, L. Guibas, Wavelets on graphs via deep learning, in Proceedings of the Advances in Neural Information Processing Systems (2013), pp. 998–1006

    Google Scholar 

  37. A. Sakiyama, Y. Tanaka, Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process. 62(24), 6425–6437 (2014)

    Article  MathSciNet  Google Scholar 

  38. A. Sandryhaila, J. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process. 61, 1644–1656 (2013)

    Article  MathSciNet  Google Scholar 

  39. A. Sandryhaila, J.M. Moura, Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure. IEEE Signal Process. Mag. 31(5), 80–90 (2014)

    Article  Google Scholar 

  40. D.I. Shuman, M.J. Faraji, P. Vandergheynst, A multiscale pyramid transform for graph signals. IEEE Trans. Signal Process. 64(8), 2119–2134 (2016)

    Article  MathSciNet  Google Scholar 

  41. D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  42. D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. (2015). https://doi.org/10.1016/j.acha.2015.02.005

  43. D.I. Shuman, C. Wiesmeyr, N. Holighaus, P. Vandergheynst, Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Trans. Signal Process. 63(16), 4223–4235 (2015)

    Article  MathSciNet  Google Scholar 

  44. L. Stankovic, M. Dakovic, E. Sejdic, Vertex-frequency analysis: a way to localize graph spectral components [lecture notes]. IEEE Signal Process. Mag. 34(4), 176–182 (2017)

    Article  Google Scholar 

  45. Y. Tanaka, A. Sakiyama, M-channel oversampled graph filter banks. IEEE Trans. Signal Process. 62(14), 3578–3590 (2014)

    Article  MathSciNet  Google Scholar 

  46. D.B.H. Tay, J. Zhang, Techniques for constructing biorthogonal bipartite graph filter banks. IEEE Trans. Signal Process. 63(21), 5772–5783 (2015). https://doi.org/10.1109/TSP.2015.2460216

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Thanou, D.I. Shuman, P. Frossard, Learning parametric dictionaries for signals on graphs. IEEE Trans. Signal Process. 62(15), 3849–3862 (2014)

    Article  MathSciNet  Google Scholar 

  48. N. Tremblay, P. Borgnat, Subgraph-based filterbanks for graph signals. IEEE Trans. Signal Process. 64(15), 3827–3840 (2016)

    Article  MathSciNet  Google Scholar 

  49. D. Van De Ville, R. Demesmaeker, M.G. Preti, When slepian meets fiedler: putting a focus on the graph spectrum. IEEE Signal Process. Lett. 24(7), 1001–1004 (2017)

    Article  Google Scholar 

  50. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  51. Y. Yankelevsky, M. Elad, Dual graph regularized dictionary learning. IEEE Trans. Signal Inf. Process. Netw. 2(4), 611–624 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This chapter draws in part on material previously published in [4].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Behjat .

Editor information

Editors and Affiliations

Appendices

Appendix 1 - Proof of Proposition 1

The sum of squared magnitudes of B-spline based spectral kernels \(\{B_{j}(\lambda )\}_{j=1}^{J}\) forms a partition of unity since

$$\begin{aligned} \sum _{j=1}^{J} |B_{j}(\lambda )|^{2}&\,\, {\mathop {=}\limits ^{(38)}} \sum _{i=\varDelta }^{J+\varDelta +1} |\widetilde{B}_{i}(\lambda )|^{2} \\&\,\, {\mathop {=}\limits ^{(39)}} \sum _{i=\varDelta }^{J+\varDelta +1} \beta ^{(n)}\left( \frac{\lambda _{\text {max}}}{J-1} (\lambda - i+1) \right) \\&{\mathop {=}\limits ^{i-1 \rightarrow k}} \sum _{k=\varDelta -1}^{J+\varDelta } \beta ^{(n)}\left( \frac{\lambda _{\text {max}}}{J-1} (\lambda - k) \right) \\&\quad = 1 . \end{aligned}$$

where in the last equality we use the property that integer shifted splines form a partition of unity.

Appendix 2 - Proof of Proposition 2

In order to ensure that the spectral kernels cover the full spectrum, a must be chosen such that

$$\begin{aligned} \lambda _{\text {max}} {\mathop {=}\limits ^{(54c)}} \lambda _{\text {II}}+a {\mathop {=}\limits ^{(j=J)}} \gamma a+(J-2)\varDelta + a, \end{aligned}$$

which using (55a) leads to \( a = \frac{\lambda _{\text {max}}}{J\gamma -J -\gamma +3}.\)

To prove that the UMT system of spectral kernels form a tight frame, (21) needs to be fulfilled. Since, for all j, the supports of \(U_{j-1}(\lambda )\) and \(U_{j+1}(\lambda )\) are disjoint, \(G(\lambda )\) can be determined as

$$\begin{aligned} G(\lambda )&= \sum _{j=1}^{J} |U_{j}(\lambda )|^{2} \nonumber \\&\, \, {\mathop {=}\limits ^{(54)}} {\left\{ \begin{array}{ll} |U_{1}(\lambda )|^{2} \, {\mathop {=}\limits ^{(54a)}} 1 &{} \forall \lambda \in [0,a]\\ |U_{1}(\lambda )|^{2} + |U_{2}(\lambda )|^{2} &{} \forall \lambda \in ]a,\gamma a]\\ |U_{2}(\lambda )|^{2} + |U_{3}(\lambda )|^{2} &{} \forall \lambda \in ]\gamma a,\gamma a + \varDelta ]\\ \vdots &{} \vdots \\ |U_{J}(\lambda )|^{2} \, {\mathop {=}\limits ^{(54c)}} 1 &{} \forall \lambda \in ]\lambda _{\text {max}}-a,\lambda _{\text {max}}] \end{array}\right. }\nonumber \\&{\mathop {=}\limits ^{(54b)}} {\left\{ \begin{array}{ll} 1 &{} \forall \lambda \in [0,a]\\ \cos ^{2}(x_{\text {I}}) + \sin ^{2}(x_{\text {I}}) &{} \forall \lambda \in ]a,\gamma a]\\ \cos ^{2}(x_{\text {II}}) + \sin ^{2}(x_{\text {II}}) &{} \forall \lambda \in ]\gamma a,\gamma a + \varDelta ]\\ \vdots &{} \vdots \\ 1 &{} \forall \lambda \in ]\lambda _{\text {max}}-a,\lambda _{\text {max}}] \end{array}\right. } \nonumber \\&\, \, = 1 \quad \forall \lambda \in [0,\lambda _{\text {max}}] \end{aligned}$$
(64)

where \(x_{\text {I}} = \frac{\pi }{2} \nu (\frac{1}{\gamma -1}(\frac{\lambda }{a}-1)) \) and \(x_{\text {II}} = \frac{\pi }{2} \nu (\frac{1}{\gamma -1}(\frac{\lambda - \varDelta }{a}-1))\).

For any given \(\gamma \), the constructed set of spectral kernels form a tight frame. However, in order for the frame to satisfy the uniformity constraint given in (51), the appropriate \(\gamma \) needs to be determined. From (54b), we have \(\forall j \in \{2, \ldots ,J-2\}\)

$$\begin{aligned} U_{j}(\lambda )&= U_{j+1}(\lambda + \varDelta ) \quad \, \forall \lambda \in ]\lambda _{\text {I}},\lambda _{\text {II}} + \varDelta ]. \end{aligned}$$
(65)

By considering an inverse linear mapping of the spectral support where \(U_{1}(\lambda ) \ne 0\), i.e. \([0, \gamma a]\), to the spectral support where \(U_{J}(\lambda ) \ne 0\), i.e. \([\lambda _{\text {max}}-\gamma a,\lambda _{\text {max}}]\), we have

$$\begin{aligned} U_{1}(\lambda ) = U_{J}(- \lambda + 2a + J \varDelta ) \quad \, \forall \lambda \in [0,\gamma a]. \end{aligned}$$
(66)

Thus, from (65) and (66) we have

$$\begin{aligned} \int _{0}^{\lambda _{\text {max}}} {U_{j}}(\lambda ) d\lambda&= C_2, \quad j=2,\ldots ,J-1 \end{aligned}$$
(67a)
$$\begin{aligned} \int _{0}^{\lambda _{\text {max}}} U_{1}(\lambda ) d\lambda&= \int _{0}^{\lambda _{\text {max}}} {U_{J}}(\lambda ) d\lambda = C_1, \end{aligned}$$
(67b)

respectively, where \(C_1,C_2 \in \mathbb {R}^{+}\). Thus, in order to satisfy (51), \(\gamma \) should be chosen such that

$$\begin{aligned} C_1&= C_2 \nonumber \\ \int _{0}^{\lambda _{\text {max}}} U_{1}(\lambda ) d\lambda&= \int _{0}^{\lambda _{\text {max}}} {U_{2}}(\lambda ) d\lambda \nonumber \\ a + \int _{a}^{\gamma a} U_{1}(\lambda ) d\lambda&= \int _{a}^{\gamma a} \sin (\frac{\pi }{2} \nu (\frac{1}{\gamma -1} (\frac{\lambda }{a} -1))) d\lambda \nonumber \\&+ \int _{\gamma a}^{\gamma a+\varDelta } {U_{2}}(\lambda ) d\lambda \nonumber \\ a&{\mathop {=}\limits ^{(65)}} \int _{a}^{\gamma a} \sin (\frac{\pi }{2} \nu (\frac{1}{\gamma -1} (\frac{\lambda }{a} -1))) d\lambda . \end{aligned}$$
(68)

The optimal \(\gamma \) that satisfies (68) was obtained numerically by defining

$$\begin{aligned} Q(\gamma ) = \int _{a}^{\gamma a} \sin (\frac{\pi }{2} \nu (\frac{1}{\gamma -1} (\frac{\lambda }{a} -1))) d\lambda - a, \end{aligned}$$
(69)

and discretizing \(Q(\gamma )\) within the range \((a,\gamma a]\), with a sampling factor of \(1 \times 10^{-4}\). Testing for \(\gamma \ge 1\), with a step size of \(1 \times 10^{-2}\), the optimal value, which is independent of \(\lambda _{\text {max}}\) and J, was found to be \(\gamma = 2.73\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behjat, H., Van De Ville, D. (2019). Spectral Design of Signal-Adapted Tight Frames on Graphs. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics