Skip to main content

Shape Analysis of Carpal Bones Using Spectral Graph Wavelets

  • Chapter
  • First Online:
Vertex-Frequency Analysis of Graph Signals

Part of the book series: Signals and Communication Technology ((SCT))

  • 2128 Accesses

Abstract

Graph signal processing is an emerging field that provides powerful tools for analyzing signals defined on graphs. In this chapter, we present a graph signal processing approach to shape analysis of carpal bones of the human wrist by exploiting local structure information among shape features for the purpose of quantitative shape comparison. We represent the cortical surface of a carpal bone in the spectral geometric setting using the Laplace-Beltrami operator and spectral graph wavelets. We propose a global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivatiate analysis of variance (MANOVA) and permutation testing, our extensive results that the proposed GSGW framework gives a much better performance compared to the graph spectral signature (GPS) embedding approach for comparing shapes of the carpal bones across populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ARPACK (ARnoldi PACKage) is a MATLAB library for computing the eigenvalues and eigenvectors of large matrices.

References

  1. J. Crisco, J. Coburn, D. Moore, M. Upal, Carpal bone size and scaling in men versus in women. J. Hand Surg. 30(1), 35–42 (2005)

    Article  Google Scholar 

  2. D. Moore, J. Crisco, T. Trafton, E. Leventhal, A digital database of wrist bone anatomy and carpal kinematics. J. Biomech. 40(11), 2537–2542 (2007)

    Google Scholar 

  3. A. Bronstein, M. Bronstein, R. Kimmel, Numerical Geometry of Non-rigid Shapes (Springer, Berlin, 2008)

    Google Scholar 

  4. M. Reuter, F. Wolter, N. Peinecke, Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Comput.-Aided Design 38(4), 342–366 (2006)

    Article  Google Scholar 

  5. R. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation, in Proceedings of the Symposium on Geometry Processing (2007), pp. 225–233

    Google Scholar 

  6. A. Bronstein, M. Bronstein, L. Guibas, M. Ovsjanikov, Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 00 (2011)

    Google Scholar 

  7. S. Biasotti, A. Cerri, M. Abdelrahman, M. Aono, A. Ben Hamza, M. El-Melegy, A. Farag, V. Garro, A. Giachetti, D. Giorgi, A. Godil, C. Li, Y.-J. Liu, H. Martono, C. Sanada, A. Tatsuma, S. Velasco-Forero, C.-X. Xu, SHREC’14 track: retrieval and classification on textured 3D models, in Proceedings of the Eurographics Workshop on 3D Object Retrieval (2014), pp. 111–120

    Google Scholar 

  8. M. Masoumi, C. Li, A. Ben Hamza, A spectral graph wavelet approach for nonrigid 3D shape retrieval. Pattern Recognit. Lett. 83, 339–348 (2016)

    Google Scholar 

  9. E. Rodola, L. Cosmo, O. Litany, M.M. Bronstein, A.M. Bronstein, N. Audebert, A. Ben Hamza, A. Boulch, U. Castellani, M.N. Do, A.-D. Duong, T. Furuya, A. Gasparetto, Y. Hong, J. Kim, B.L. Saux, R. Litman, M. Masoumi, G. Minello, H.-D. Nguyen, V.-T. Nguyen, R. Ohbuchi, V.-K. Pham, T.V. Phan, M. Rezaei, A. Torsello, M.-T. Tran, Q.-T. Tran, B. Truong, L. Wan, C. Zou11, SHREC’17 track: Deformable shape retrieval with missing parts, in Proceedings of the Eurographics Workshop on 3D Object Retrieval 2017 (2017), pp. 1–9

    Google Scholar 

  10. M. Masoumi, A. Ben Hamza, Spectral shape classification: a deep learning approach. J. Vis. Commun. Image Represent. 43, 198–211 (2017)

    Article  Google Scholar 

  11. E. Elsheh, A. Ben Hamza, Secret sharing approaches for 3D object encryption. Expert Syst. Appl. 38(11), 13906–13911 (2011)

    Google Scholar 

  12. A. Chaudhari, R. Leahy, B. Wise, N. Lane, R. Badawi, A. Joshi, Global point signature for shape analysis of carpal bones. Phys. Med. Biol. 59, 961–973 (2014)

    Article  Google Scholar 

  13. Z. Gao, Z. Yu, X. Pang, A compact shape descriptor for triangular surface meshes. Comput.-Aided Design 53, 62–69 (2014)

    Article  Google Scholar 

  14. J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  15. M. Aubry, U. Schlickewei, D. Cremers, The wave kernel signature: A quantum mechanical approach to shape analysis, in Proceedings of the Computational Methods for the Innovative Design of Electrical Devices (2011), pp. 1626–1633

    Google Scholar 

  16. D. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. 40(2), 260–291 (2016)

    Article  MathSciNet  Google Scholar 

  17. L. Stankovic, E. Sejdic, M. Dakovic, Vertex-frequency energy distributions. IEEE Signal Process. Lett. (2017)

    Google Scholar 

  18. R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  Google Scholar 

  19. D. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  20. C. Li, A. Ben Hamza, A multiresolution descriptor for deformable 3D shape retrieval. Vis. Comput. 29, 513–524 (2013)

    Google Scholar 

  21. S. Rosenberg, The Laplacian on a Riemannian Manifold (Cambridge University Press, New York, 1997)

    Google Scholar 

  22. H. Krim, A. Ben Hamza, Geometric Methods in Signal and Image Analysis (Cambridge University Press, New York, 2015)

    Google Scholar 

  23. M. Meyer, M. Desbrun, P. Schröder, A. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III 3(7), 35–57 (2003)

    MathSciNet  MATH  Google Scholar 

  24. M. Wardetzky, S. Mathur, F. Kälberer, E. Grinspun, Discrete Laplace operators: no free lunch, in Proceedings of the Eurographics Symposium Geometry Processing (2007), pp. 33–37

    Google Scholar 

  25. A. Crowley, J. Dong, A. McHaffie, A. Clarke, Q. Reeves, M. Williams, E. Robinson, N. Dalbeth, F. McQueen, Measuring bone erosion and edema in rheumatoid arthritis: a comparison of manual segmentation and ramris methods. J. Magn. Reson. Imaging 33(2), 364–371 (2011)

    Article  Google Scholar 

  26. M. Tocheri, C. Orr, S. Larson, T. Sutikna, E. Saptomo, R. Due, T. Djubiantono, M. Morwood, W. Jungers, The primitive wrist of homo floresiensis and its implications for hominin evolution. Science 317(5845), 1743–1745 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masoumi, M., Rezaei, M., Hamza, A.B. (2019). Shape Analysis of Carpal Bones Using Spectral Graph Wavelets. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics