Skip to main content

Nanoparticle-Based SERS Substrates for Molecular Sensing Applications

  • Chapter
  • First Online:
  • 496 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As already discussed in the introductory chapters, the wide interest and research focused on plasmonic nanostructures for near field coupling and enhanced field confinement has paved the way for the development of numerous specific applications in diverse fields, from sensors technology to medical diagnostics. Among these applications, plasmonic substrates for SERS spectroscopy, sensing and SERS-based chemical analysis have attracted much interest. In this chapter, we will present a study on the SERS efficiency of self-assembled mesoscopic nanoparticle aggregates by means of spectroscopy, atomic force microscopy and electromagnetic simulations. We will also discuss the preparation of EBL-template guided, self-assembled nanoparticle cluster arrays on solid substrates and their performances as SERS substrates for biosensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Lumerical FDTD Solutions, https://www.lumerical.com/tcad-products/fdtd/, last visited 01.11.2016

References

  1. Alba M, Pazos-Perez N et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering. Angew Chem Int Ed 52(25):6459–6463

    Article  Google Scholar 

  2. Anker JN, Hall WP et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  ADS  Google Scholar 

  3. Baia M, Toderas F et al (2006) Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem Phys Lett 422(1):127–132

    Article  ADS  Google Scholar 

  4. Bizzarri AR, Cannistraro S (2009) Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Anal Biochem 393(2):149–154

    Article  Google Scholar 

  5. Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200

    Article  ADS  MathSciNet  Google Scholar 

  6. Brewer G (2012) Electron-beam technology in microelectronic fabrication. Elsevier, Amsterdam

    Google Scholar 

  7. Butler RW (1986) Optimal stratification and clustering on the line using the L1-norm. J Multivar Anal 19(1):142–155

    Article  Google Scholar 

  8. Costantini F, Nascetti A et al (2014) On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Adv 4(4):2073–2080

    Article  Google Scholar 

  9. Deng Y-L, Juang Y-J (2014) Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens Bioelectron 53:37–42

    Article  Google Scholar 

  10. Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042

    Google Scholar 

  11. Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15

    Article  Google Scholar 

  12. Domenici F, Fasolato C et al (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A PhysChemical Eng Asp 498:168–175

    Article  Google Scholar 

  13. Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392

    Article  ADS  Google Scholar 

  14. Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105

    Article  ADS  Google Scholar 

  15. Fasolato C, Domenici F et al (2015) Self-assembled nanoparticle aggregates: organizing disorder for high performance surface-enhanced spectroscopy. In: NANOFORUM 2014, vol. 1667. AIP Publishing, p 020012

    Google Scholar 

  16. Fraire JC, Pérez LA et al (2012) Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. ACS Nano 6(4):3441–3452

    Article  Google Scholar 

  17. Frenkel D, Smit B (1996) Understanding molecular simulations: from algorithms to applications. Academic, San Diego

    MATH  Google Scholar 

  18. Gedney SD (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth Lect Comput Electromagn 6(1):1–250

    Article  ADS  Google Scholar 

  19. Halliwell CM, Cass AEG (2001) A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal Chem 73(11):2476–2483

    Article  Google Scholar 

  20. Hagness SC, Taflove A (2000) Computational electrodynamics: the finite difference time-domain method. Artech House, Norwood

    MATH  Google Scholar 

  21. Shu-Fen H, Huang K-D (2006) Proximity effect of electron beam lithography on single-electron transistors. Pramana 67(1):57–65

    Article  ADS  Google Scholar 

  22. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  ADS  Google Scholar 

  23. Jeong JW, Arnob MMP et al (2016) 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv Mater 28:8695

    Article  Google Scholar 

  24. Jia C-P, Zhong X-Q et al (2009) Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron 24(9):2836–2841

    Article  Google Scholar 

  25. Kim NH, Lee SJ et al (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23(36):4152–4156

    Article  Google Scholar 

  26. Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca Raton

    Google Scholar 

  27. Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  ADS  Google Scholar 

  28. Kneipp K, Moskovits M et al (2006) Surface-enhanced Raman scattering: physics and applications, vol 103. Springer Science & Business Media, Berlin

    Google Scholar 

  29. Liu H, Yang Z et al (2014) Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc 136(14):5332–5341

    Article  Google Scholar 

  30. Lu Y, Liu GL et al (2005) High-density silver nanoparticle film with temperature controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9

    Article  ADS  Google Scholar 

  31. Mohammad MA, Muhammad M et al (2012) Fundamentals of electron beam exposure and development. Nanofabrication. Springer, Berlin, pp 11–41

    Google Scholar 

  32. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311

    Article  Google Scholar 

  33. Marrian CRK, Tennant DM (2003) Nanofabrication. J Vac Sci Technol A 21(5):S207–S215

    Article  ADS  Google Scholar 

  34. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  35. Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Nilsson G (1967) Optimal stratification according to the method of least squares. Scand Actuar J 1967(3–4):128–136

    Article  MathSciNet  Google Scholar 

  37. Osawa M, Matsuda N et al (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707

    Article  Google Scholar 

  38. Palik ED (1998) Handbook of optical constants of solids. Academic, Cambridge

    Google Scholar 

  39. Prevo BG, Kuncicky DM et al (2007) Engineered deposition of coatings from nanoand micro-particles: a brief review of convective assembly at high volume fraction. Colloids Surf A PhysChemical Eng Asp 311(1):2–10

    Article  Google Scholar 

  40. Siddhanta S (2012) Surface enhanced Raman spectroscopy of proteins: implications in drug designing. Nanomater Nanotechnol 2(2012):2–1

    Google Scholar 

  41. Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626

    Article  Google Scholar 

  42. Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547

    Article  Google Scholar 

  43. Sullivan DM (2013) Electromagnetic simulation using the FDTD method. Wiley, New Jercy

    Book  Google Scholar 

  44. Tandon US, Khokle WS (1993) Patterning of material layers in submicron region. Halsted Press, Sydney

    Google Scholar 

  45. Utke I, Moshkalev S et al (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  46. Van Duyne RP, Hulteen JC et al (1993) Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys 99(3):2101–2115

    Article  ADS  Google Scholar 

  47. Yan B, Thubagere A et al (2009) Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3(5):1190–1202

    Article  Google Scholar 

  48. Yan B, Boriskina SV et al (2011) Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing. J Phys Chem C 115(50):24437–24453

    Article  Google Scholar 

  49. Yan B, Boriskina B et al (2011) Optimizing gold nanoparticle cluster configurations (n \(\le \) 7) for array applications. J Phys Chem C 115(11):4578–4583

    Article  Google Scholar 

  50. Yoshida KI, Itoh T et al (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys Rev B 81(11):115406

    Article  ADS  Google Scholar 

  51. Zhang Z, Wen Y (2012) Controllable aggregates of silver nanoparticle induced by methanol for surface-enhanced Raman scattering. Appl Phys Lett 101(17):173109

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fasolato .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasolato, C. (2018). Nanoparticle-Based SERS Substrates for Molecular Sensing Applications. In: Surface Enhanced Raman Spectroscopy for Biophysical Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03556-3_4

Download citation

Publish with us

Policies and ethics