Skip to main content

Synthesis of Gold-Copper Nanoparticles by Colloidal Method Varying the Compositions as a Function of the Synthesis Final Temperature

  • Chapter
  • First Online:
Colloidal Nanoparticles for Heterogeneous Catalysis

Part of the book series: Springer Theses ((Springer Theses))

  • 474 Accesses

Abstract

Advances in the synthesis of nanomaterials have contributed to the development of strategic areas, especially on the demand for new materials and technologies for energy production. In this way, it becomes indispensable deeper studies about the steps involved in the formation process of nanoparticles. Therefore is presented in this Chapter a systematic study about the nucleation and growth process the AuCu colloidal nanoparticles using the one-pot method. In situ XAFS studies demonstrate the process of digestion ripening-like process in the formation of the alloy, leading to a complete overview of the synthesis and pointing out key steps that lead to a fine control of size and composition of colloidal alloy.

* The content of this chapter is adapted with permission from the articles entitled “Au1xCux colloidal nanoparticles synthesized via a one-pot approach: understanding the temperature effect on the Au:Cu ratio* and “Formation of bimetallic copper‐gold alloy nanoparticles probed by in situ XAFS”**.

Reference:

Destro, P.; Colombo, M.; Prato, M.; Brescia, R.; Manna, L.; Zanchet, D. RSC Adv.,2016, 6, 22213. Copyright (2018) by Royal Society of Chemistry. Reproduced with permission.

**Destro, P.; Cantane, D.A.; Meira, D.M.; Honório, G.S; da Costa, L. S; Bueno, J.M.C and Zanchet, D. JEur. J. Inorg. Chem. 2018. Volume. Page(s). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201. https://doi.org/10.1039/a805753b

    Article  CAS  Google Scholar 

  2. Jana S (2015) Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Trans 44:18692–18717. https://doi.org/10.1039/C5DT03699B

    Article  CAS  PubMed  Google Scholar 

  3. Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676. https://doi.org/10.1002/cctc.201200591

    Article  CAS  Google Scholar 

  4. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78. https://doi.org/10.1007/s11468-008-9077-8

    Article  CAS  Google Scholar 

  5. Brust M, Walker M, Bethell D, et al (2000) Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System Mathias. Chem Commun 801–802

    Google Scholar 

  6. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir: ACS J Surf Colloids 25:13840–13851. https://doi.org/10.1021/la9019475

    Article  CAS  Google Scholar 

  7. DeSantis CJ, Weiner RG, Radmilovic A et al (2013) Seeding bimetallic nanostructures as a new class of plasmonic colloids. J Phys Chem Lett 4:3072–3082. https://doi.org/10.1021/jz4011866

    Article  CAS  Google Scholar 

  8. Sra AK, Schaak RE (2004) Synthesis of Atomically Ordered AuCu and AuCu 3 Nanocrystals from bimetallic nanoparticle precursors. J Am Chem Soc 6667–6672

    Article  CAS  PubMed  Google Scholar 

  9. Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun (Camb) 48:5626–5628. https://doi.org/10.1039/c2cc31576a

    Article  CAS  Google Scholar 

  10. Barcaro G, Fortunelli A, Rossi G et al (2006) Electronic and structural shell closure in AgCu and AuCu nanoclusters. J Phys Chem B 110:23197–23203. https://doi.org/10.1021/jp064593x

    Article  CAS  PubMed  Google Scholar 

  11. Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms5948

    Article  CAS  Google Scholar 

  12. Alloyeau D, Ricolleau C, Mottet C et al (2009) Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat Mater 8:940–946. https://doi.org/10.1038/nmat2574

    Article  CAS  PubMed  Google Scholar 

  13. Sun S, Murray CB, Weller D et al (2000) Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287:1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  PubMed  Google Scholar 

  14. Kuttiyiel KA, Sasaki K, Su D et al (2014) Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms6185

    Article  CAS  Google Scholar 

  15. Nemoshkalenko VV, Chuistov KV, Aleshin VG, Senkevich AI (1976) Changes in energy structure of Cu3Au and CuAu3 alloy studied by the method of X-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 9:169–173. https://doi.org/10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  16. Tee SY, Ye E, Pan PH et al (2015) Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 7:11190–11198. https://doi.org/10.1039/C5NR02399H

    Article  CAS  PubMed  Google Scholar 

  17. Chen LY, Fujita T, Ding Y, Chen MW (2010) A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Func Mater 20:2279–2285. https://doi.org/10.1002/adfm.201000326

    Article  CAS  Google Scholar 

  18. Kim S-I, Eom G, Kang M et al (2015) Composition-selective fabrication of ordered intermetallic Au–Cu nanowires and their application to nano-size electrochemical glucose detection. Nanotechnology 26:245702. https://doi.org/10.1088/0957-4484/26/24/245702

    Article  CAS  PubMed  Google Scholar 

  19. He R, Wang Y, Wang X et al (2014) Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms5327

    Article  CAS  Google Scholar 

  20. Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243. https://doi.org/10.1039/b817729p

    Article  CAS  PubMed  Google Scholar 

  21. Najafishirtari S, Brescia R, Guardia P et al (2015) Nanoscale transformations of alumina-supported AuCu ordered phase nanocrystals and their activity in co oxidation. ACS Catal 5:2154–2163. https://doi.org/10.1021/cs501923x

    Article  CAS  Google Scholar 

  22. Vasquez Y, Luo Z, Schaak RE (2008) Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3 Fe, Au3 Co, and Au3 Ni as nanocrystals. 11866–11867. https://doi.org/10.1021/ja804858u

    Article  CAS  PubMed  Google Scholar 

  23. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Niu W, Xu G (2012) Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7:586–605. https://doi.org/10.1016/j.nantod.2012.10.005

    Article  CAS  Google Scholar 

  25. Au L, Lu X, Xia Y (2008) A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl(2) or AuCl(4). Adv Mater 20:2517–2522. https://doi.org/10.1002/adma.200800255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moon GD, Ko S, Min Y et al (2011) Chemical transformations of nanostructured materials. Nano Today 6:186–203. https://doi.org/10.1016/j.nantod.2011.02.006

    Article  CAS  Google Scholar 

  27. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 48:60–103. https://doi.org/10.1002/anie.200802248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu S, Sun Z, Liu Q et al (2014) Unidirectional thermal diffusion in bimetalic cu@au nanoparticles. ACS Nano 8:1886–1892

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Yu R, Li L et al (2010) A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew Chem 122:2979–2983. https://doi.org/10.1002/ange.200906835

    Article  Google Scholar 

  30. Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 8163–8178. https://doi.org/10.1039/c2cs35174a

    Article  CAS  PubMed  Google Scholar 

  31. Krishna KS, Navin CV, Biswas S et al (2013) Milli fluidics for Time-resolved Mapping of the Growth of Gold Nanostructures. J Am Chem Soc 135:5450–5456

    Article  Google Scholar 

  32. Campi G, Mari A, Amenitsch H et al (2010) Monitoring early stages of silver particle formation in a polymer solution by in situ and time resolved small angle X-ray scattering. Nanoscale 2:2447–2455. https://doi.org/10.1039/c0nr00390e

    Article  CAS  PubMed  Google Scholar 

  33. Sarma LS, Chen CH, Kumar SMS et al (2007) Formation of Pt–Ru nanoparticles in ethylene glycol solution: An in situ X-ray absorption spectroscopy study. Langmuir 23:5802–5809. https://doi.org/10.1021/la0637418

    Article  CAS  PubMed  Google Scholar 

  34. Tsai YW, Tseng YL, Sarma LS et al (2004) Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy. J Phys Chem B 108:8148–8152. https://doi.org/10.1021/jp0495592

    Article  CAS  Google Scholar 

  35. Chen CH, Hwang BJ, Wang GR et al (2005) Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuceinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy. J Phys Chem B 109:21566–21575. https://doi.org/10.1021/Jp054062t

    Article  CAS  PubMed  Google Scholar 

  36. Boita J, Vinicius Castegnaro M, Martins Alves MDC, Morais J (2015) A dispenser-reactor apparatus applied for in situ XAS monitoring of Pt nanoparticle formation. J Synchrotron Radiat 22:736–744. https://doi.org/10.1107/S1600577515003434

    Article  CAS  PubMed  Google Scholar 

  37. Boita J, Nicolao L, Alves MCM, Morais J (2014) Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys Chem Chem Phys 16:17640. https://doi.org/10.1039/C4CP01925C

    Article  CAS  PubMed  Google Scholar 

  38. Oyanagi H, Sun ZH, Jiang Y et al (2011) In situ XAFS experiments using a microfluidic cell: application to initial growth of CdSe nanocrystals. J Synchrotron Radiat 18:272–279. https://doi.org/10.1107/S0909049510050545

    Article  CAS  PubMed  Google Scholar 

  39. Motl NE, Ewusi-Annan E, Sines IT et al (2010) Au–Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory. J Phys Chem 114:19263–19269

    CAS  Google Scholar 

  40. Bansal A, Sekhon JS, Verma SS (2013) Scattering efficiency and LSPR tunability of bimetallic Ag, Au, and Cu nanoparticles. Plasmonics 9:143–150. https://doi.org/10.1007/s11468-013-9607-x

    Article  CAS  Google Scholar 

  41. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315. https://doi.org/10.1039/c0nr00804d

    Article  CAS  PubMed  Google Scholar 

  42. Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun (Camb) 48:5626–5628. https://doi.org/10.1039/c2cc31576a

    Article  CAS  Google Scholar 

  43. Guisbiers G, Mejia-Rosales S, Khanal S et al (2014) Gold–Copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726. https://doi.org/10.1021/nl503584q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. https://doi.org/10.1103/revmodphys.77.371

    Article  CAS  Google Scholar 

  45. Tanuma S, Powell CJ, Penn DR (2000) Calculations of electron inelastic mean free paths. Surf Interface Anal 21:165–176. https://doi.org/10.1002/sia.1997

    Article  CAS  Google Scholar 

  46. Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The Au–Cu (Gold–Copper) system. Bull Alloy Phase Diag 454–473

    Article  CAS  Google Scholar 

  47. Schaak RE, Sra AK, Leonard BM et al (2005) Metallurgy in a beaker: nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials. J Am Chem Soc 127:3506–3515. https://doi.org/10.1021/ja043335f

    Article  CAS  PubMed  Google Scholar 

  48. Kuhn M, Sham TK (1994) Charge redistribution and electronic behavior in a series of Au–Cu alloys. Phys Rev B 49:1647–1661

    Article  CAS  Google Scholar 

  49. Cassinelli WH, Martins L, Passos AR et al (2014) Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst. Catal Today 229:114–122. https://doi.org/10.1016/j.cattod.2013.10.077

    Article  CAS  Google Scholar 

  50. Borgohain K, Murase N, Mahamuni S (2002) Synthesis and properties of Cu2O quantum particles. J Appl Phys 92:1292–1297. https://doi.org/10.1063/1.1491020

    Article  CAS  Google Scholar 

  51. Chang Y, Teo JJ, Zeng HC (2005) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21:1074–1079. https://doi.org/10.1021/la0476711

    Article  CAS  PubMed  Google Scholar 

  52. Chen L, Zhang Y, Zhu P et al (2015) Copper salts mediated morphological transformation of Cu < inf > 2</inf > O from cubes to hierarchical flower-like or microspheres and their supercapacitors performances. Sci Rep 5:1–7. https://doi.org/10.1038/srep09672

    Article  CAS  Google Scholar 

  53. Liu X, Wang A, Li L et al (2011) Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278:288–296. https://doi.org/10.1016/j.jcat.2010.12.016

    Article  CAS  Google Scholar 

  54. Sinha SK, Srivastava C, Sampath S, Chattopadhyay K (2015) Tunability of monodispersed intermetallic AuCu nanoparticles through understanding of reaction pathways. RSC Adv 5:4389–4395. https://doi.org/10.1039/C4RA12059K

    Article  CAS  Google Scholar 

  55. Gauthard F, Epron F, Barbier J (2003) Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water: effect of copper, silver, or gold addition. J Catal 220:182–191. https://doi.org/10.1016/S0021-9517(03)00252-5

    Article  CAS  Google Scholar 

  56. Shore MS, Wang J, Johnston-Peck AC et al (2011) Synthesis of Au(core)/Ag(shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small 7:230–234. https://doi.org/10.1002/smll.201001138

    Article  CAS  PubMed  Google Scholar 

  57. Smetana AB, Klabunde KJ, Sorensen CM et al (2006) Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening. J Phys Chem B 110:2155–2158

    Article  CAS  PubMed  Google Scholar 

  58. Bhaskar SP, Vijayan M, Jagirdar BR (2014) Size modulation of colloidal au nanoparticles via digestive ripening in conjunction with a solvated metal atom dispersion method: an insight into mechanism. J Phys Chem C 118:18214–18225. https://doi.org/10.1021/jp505121b

    Article  CAS  Google Scholar 

  59. Kalidindi SB, Jagirdar BR (2008) Synthesis of Cu@ZnO core-shell nanocomposite through digestive ripening of Cu and Zn nanoparticles. J Phys Chem C 112:4042–4048. https://doi.org/10.1021/Jp7100896

    Article  CAS  Google Scholar 

  60. Jose D, Jagirdar BR (2008) Au@Pd core-shell nanoparticles through digestive ripening. J Phys Chem C 112:10089–10094

    Article  CAS  Google Scholar 

  61. Najafishirtari S, Brescia R, Guardia P et al (2015) Nanoscale transformations of alumina-supported AuCu ordered phase nanocrystals and their activity in CO oxidation. ACS Catal 5:2154–2163. https://doi.org/10.1021/cs501923x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Destro .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Destro, P. (2019). Synthesis of Gold-Copper Nanoparticles by Colloidal Method Varying the Compositions as a Function of the Synthesis Final Temperature. In: Colloidal Nanoparticles for Heterogeneous Catalysis. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03550-1_2

Download citation

Publish with us

Policies and ethics