Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 432 Accesses

Abstract

In this book, readers will appreciate the fundamental aspects involved in the synthesis of AuCu nanoalloys, including real-time information about their atomic organization, electronic properties, as well a deeper understand about the behavior of AuCu supported nanoalloys under real catalytic conditions, providing interesting insights about the effect of the support on the nanoalloy stability. The results presented here open new horizons for using metal alloys in catalysis and also other areas where the metal–support interface may play a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295. https://doi.org/10.1021/nl101807g

    Article  CAS  PubMed  Google Scholar 

  2. Daniel MCM, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  3. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449–493. https://doi.org/10.1016/j.nantod.2010.08.006

    Article  CAS  Google Scholar 

  4. Bonnemann H, Richards RM (2001) Nanoscopic metal particles-synthetic methods and potential applications. Eur J Inorg Chem 2455–2480. https://doi.org/10.1002/1099-0682(200109)2001%3A10%3C2455%3A%3Aaid-ejic2455%3E3.0.co%3B2-z

    Article  Google Scholar 

  5. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–433. https://doi.org/10.1021/cr100449n

    Article  CAS  PubMed  Google Scholar 

  6. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in Solution. Chem Rev 3. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  7. Doyle H, Betley TA (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. J Res Dev 45:47–56

    Google Scholar 

  8. Sneed BT, Young AP, Tsung C-K (2015) Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7:12248–65. https://doi.org/10.1039/c5nr02529j

    Article  CAS  PubMed  Google Scholar 

  9. Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487. https://doi.org/10.1039/c0cp02680h

    Article  CAS  PubMed  Google Scholar 

  10. Berti D, Palazzo G (2014) Colloidal foundations of nanoscience. Elsevier, First edit

    Chapter  Google Scholar 

  11. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145

    Article  Google Scholar 

  12. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670. https://doi.org/10.1038/nature04165

    Article  CAS  Google Scholar 

  13. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Coll Interface Sci 28:65–108. https://doi.org/10.1016/0001-8686(87)80009-x

    Article  CAS  Google Scholar 

  14. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 55:55–75

    Article  Google Scholar 

  15. Vreeland EC, Watt J, Schober GB et al (2015) Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem Mater 27:6059–6066. https://doi.org/10.1021/acs.chemmater.5b02510

    Article  CAS  Google Scholar 

  16. LaMer V, Dinegar R (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. https://doi.org/10.1021/ja01167a001

    Article  CAS  Google Scholar 

  17. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315. https://doi.org/10.1039/c0nr00804d

    Article  CAS  PubMed  Google Scholar 

  18. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–904. https://doi.org/10.1039/c2cs35319a

    Article  CAS  PubMed  Google Scholar 

  19. Somorjai GA, Tao F, Park JY (2008) The nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics. Top Catal 47:1–14. https://doi.org/10.1007/s11244-007-9028-1

    Article  CAS  Google Scholar 

  20. Piella J, Bastús NG, Puntes V (2016) Size-Controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075. https://doi.org/10.1021/acs.chemmater.5b04406

    Article  CAS  Google Scholar 

  21. Koutsopoulos S, Johannessen T, Eriksen KM, Fehrmann R (2006) Titania-supported Pt and Pt-Pd nanoparticle catalysts for the oxidation of sulfur dioxide. J Catal 238:206–213. https://doi.org/10.1016/j.jcat.2005.12.006

    Article  CAS  Google Scholar 

  22. Wu Y, Cai S, Wang D et al (2012) Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J Am Chem Soc 134:8975–8981. https://doi.org/10.1021/ja302606d

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Zhao Y, Yin J et al (2014) Synthesis and electrocatalytic alcohol oxidation performance of Pd–Co bimetallic nanoparticles supported on graphene. Int J Hydrogen Energy 39:1325–1335. https://doi.org/10.1016/j.ijhydene.2013.11.002

    Article  CAS  Google Scholar 

  24. Huang X, Wang X, Tan M et al (2013) Selective oxidation of alcohols on P123-stabilized Au–Ag alloy nanoparticles in aqueous solution with molecular oxygen. Appl Catal A 467:407–413. https://doi.org/10.1016/j.apcata.2013.07.062

    Article  CAS  Google Scholar 

  25. An K, Alayoglu S, Ewers T, Somorjai GA (2012) Colloid chemistry of nanocatalysts: a molecular view. J Colloid Interface Sci 373:1–13. https://doi.org/10.1016/j.jcis.2011.10.082

    Article  CAS  PubMed  Google Scholar 

  26. Johnston RL (2012) Metal nanoparticles and nanoalloys. In: Frontiers of nanoscience, 1st ed. Elsevier Ltd, pp 1–42

    Google Scholar 

  27. Pendergast DM (19170) Tumbaga object from the early classic period, found at altun ha, british honduras (Belize). Science (New York, NY) 168:116–118

    Article  CAS  Google Scholar 

  28. Yin F, Wang ZW, Palmer RE (2012) Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters. J Nanopart Res 14:1114–1124. https://doi.org/10.1007/s11051-012-1124-x

    Article  CAS  Google Scholar 

  29. Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun (Camb) 48:5626–8. https://doi.org/10.1039/c2cc31576a

    Article  CAS  Google Scholar 

  30. Ferro R, Saccone A (2008) Elements of alloying behaviour systematics. In: Intermetallic chemistry. Elsevier, Netherlands

    Google Scholar 

  31. Guisbiers G, Mejia-Rosales S, Khanal S et al (2014) Gold–copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726. https://doi.org/10.1021/nl503584q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lubarda VA (2003) On the effective lattice parameter of binary alloys. Mech Mat 35:53–68

    Article  Google Scholar 

  33. Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The Au–Cu (Gold–Copper) system. Bull Alloy Phase Diag 454–473

    Article  CAS  Google Scholar 

  34. Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243. https://doi.org/10.1039/b817729p

    Article  CAS  PubMed  Google Scholar 

  35. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phy 77:371–423. https://doi.org/10.1103/revmodphys.77.371

    Article  CAS  Google Scholar 

  36. Pauwels B, Van Tendeloo G, Zhurkin E et al (2001) Transmission electron microscopy and Monte Carlo simulations of ordering in Au–Cu clusters produced in a laser vaporization source. Phy Rev B 63:1–10. https://doi.org/10.1103/PhysRevB.63.165406

    Article  CAS  Google Scholar 

  37. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  38. Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J Chem Phys 116:1536. https://doi.org/10.1063/1.1429658

    Article  CAS  Google Scholar 

  39. Toai TJ, Rossi G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58. https://doi.org/10.1039/b707813g

    Article  CAS  PubMed  Google Scholar 

  40. Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat commun 5:4948. https://doi.org/10.1038/ncomms5948

    Article  CAS  PubMed  Google Scholar 

  41. Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley. ISBN: 3-527-30574-2

    Google Scholar 

  42. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science (New York, NY) 299:1688–1691. https://doi.org/10.1126/science.1083671

    Article  CAS  Google Scholar 

  43. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett 44:83–87. https://doi.org/10.1023/A:1018925008633

    Article  CAS  Google Scholar 

  44. Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev. https://doi.org/10.1021/cr500486u

    Article  CAS  Google Scholar 

  45. Baatz C, Decker N, Prube U (2008) New innovative gold catalysts prepared by an improved incipient wetness method. J Catal 258:165–169. https://doi.org/10.1016/j.jcat.2008.06.008

    Article  CAS  Google Scholar 

  46. Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J (2013) Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res 46:1673–81. https://doi.org/10.1021/ar300225s

    Article  CAS  PubMed  Google Scholar 

  47. Cao A, Lu R, Veser G (2010) Stabilizing metal nanoparticles for heterogeneous catalysis. Phys Chem Chem Phys 12:13499–510. https://doi.org/10.1039/c0cp00729c

    Article  CAS  PubMed  Google Scholar 

  48. Tao FF, Schneider WF, Kamat P V (2014) Chemical synthesis of nanscale heterogeneous catalysis. In: Heterogeneous catalysis at the nanoscale for energy applications, pp 9–29

    Google Scholar 

  49. Sonström P, Bäumer M (2011) Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Phys Chem Chem Phys 13:19270–19284. https://doi.org/10.1039/c1cp22048a

    Article  CAS  PubMed  Google Scholar 

  50. Pushkarev VV, Zhu Z, An K et al (2012) Monodisperse metal nanoparticle catalysts: synthesis, characterizations, and molecular studies under reaction conditions. Top Catal 55:1257–1275. https://doi.org/10.1007/s11244-012-9915-y

    Article  CAS  Google Scholar 

  51. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 405–408

    Google Scholar 

  52. Zafeiratos S, Piccinin S, Teschner D (2012) Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catal Sci Technol 2:1787. https://doi.org/10.1039/c2cy00487a

    Article  CAS  Google Scholar 

  53. Xu W, Si R, Senanayake SD et al (2012) In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the Water-Gas shift reaction: Active phases and reaction intermediates. J Catal 291:117–126. https://doi.org/10.1016/j.jcat.2012.04.013

    Article  CAS  Google Scholar 

  54. Zhou S, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for co-tolerant hydrogen activation: architectural effects in au-pt bimetallic nanocatalysts. Adv Func Mater 17:3099–3104. https://doi.org/10.1002/adfm.200700216

    Article  CAS  Google Scholar 

  55. Liu X, Wang A, Zhang T et al (2011) Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today 160:103–108. https://doi.org/10.1016/j.cattod.2010.05.019

    Article  CAS  Google Scholar 

  56. Liu JH, Wang AQ, Chi YS et al (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43. https://doi.org/10.1021/jp044938g

    Article  CAS  PubMed  Google Scholar 

  57. Remediakis IN, Lopez N, Nørskov JK (2005) CO oxidation on gold nanoparticles: theoretical studies. Appl Catal A 291:13–20. https://doi.org/10.1016/j.apcata.2005.01.052

    Article  CAS  Google Scholar 

  58. Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676. https://doi.org/10.1002/cctc.201200591

    Article  CAS  Google Scholar 

  59. Xu J, White T, Li P et al (2010) Biphasic Pd–Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–406. https://doi.org/10.1021/ja102617r

    Article  CAS  PubMed  Google Scholar 

  60. Liu H, Kozlov AI, Kozlova AP et al (1999) Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and As-precipitated titanium hydroxide. J Catal 185:252–264. https://doi.org/10.1006/jcat.1999.2517

    Article  CAS  Google Scholar 

  61. Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A 291:21–31. https://doi.org/10.1016/j.apcata.2005.01.050

    Article  CAS  Google Scholar 

  62. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166. https://doi.org/10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  63. Boccuzzi F, Chiorino a, Manzoli M, et al (2001) Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal 202:256–267. https://doi.org/10.1006/jcat.2001.3290

    Article  CAS  Google Scholar 

  64. Shekhar M, Wang J, Lee W et al (2012) size and support effects for the water–gas shift catalysis over gold. J Am Chem Soc 134:4700–4708

    Article  CAS  Google Scholar 

  65. Choudhary TV, Goodman DW (2005) Catalytically active gold: the role of cluster morphology. Appl Catal A 291:32–36. https://doi.org/10.1016/j.apcata.2005.01.049

    Article  CAS  Google Scholar 

  66. Schubert MM, Hackenberg S, van Veen AC et al (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122. https://doi.org/10.1006/jcat.2000.3069

    Article  CAS  Google Scholar 

  67. Klyushin AY, Arrigo R, Youngmi Y et al (2016) Are Au nanoparticles on oxygen-free supports catalytically active? Top Catal 59:469–477. https://doi.org/10.1007/s11244-015-0528-0

    Article  CAS  Google Scholar 

  68. Liu X, Wang A, Yang X et al (2009) Synthesis of thermally stable and highly active bimetallic Au–Ag nanoparticles on inert supports. Chem Mater 21:410–418. https://doi.org/10.1021/cm8027725

    Article  CAS  Google Scholar 

  69. Mu R, Fu Q, Xu H et al (2011) Synergetic effect of surface and subsurface Ni species at Pt–Ni bimetallic catalysts for CO oxidation. J Am Chem Soc 133:1978–1986. https://doi.org/10.1021/ja109483a

    Article  CAS  PubMed  Google Scholar 

  70. Yen C, Lin M, Wang A et al (2009) CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J Phys Chem C 113:17831–17839. https://doi.org/10.1021/jp9037683

    Article  CAS  Google Scholar 

  71. Wang AQ, Chang CM, Mou CY (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867. https://doi.org/10.1021/jp051530q

    Article  CAS  PubMed  Google Scholar 

  72. Liu X, Wang A, Li L et al (2011) Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278:288–296. https://doi.org/10.1016/j.jcat.2010.12.016

    Article  CAS  Google Scholar 

  73. Wang A, Liu XY, Mou C-Y, Zhang T (2013) Understanding the synergistic effects of gold bimetallic catalysts. J Catal 308:258–271. https://doi.org/10.1016/j.jcat.2013.08.023

    Article  CAS  Google Scholar 

  74. Zhou S, Varughese B, Eichhorn B et al (2005) Pt–Cu core-shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core-shell nanostructure. Angewandte Chemie—International Edition 44:4539–4543. https://doi.org/10.1002/anie.200500919

    Article  CAS  PubMed  Google Scholar 

  75. Cargnello M, Doan-Nguyen VVT, Gordon TR et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science (New York, NY) 341:771–3. https://doi.org/10.1126/science.1240148

    Article  CAS  Google Scholar 

  76. Yen H, Seo Y, Kaliaguine S, Kleitz F (2015) On the role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 Generation. ACS Catal 2:5505–5511. https://doi.org/10.1021/acscatal.5b00869

    Article  CAS  Google Scholar 

  77. Bauer JC, Mullins D, Li M et al (2011) Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys 13:2571–2581. https://doi.org/10.1039/c0cp01859g

    Article  CAS  PubMed  Google Scholar 

  78. Li X, See S, Fang S et al (2012) Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal 2:360–369

    Article  CAS  Google Scholar 

  79. Sugano Y, Shiraishi Y, Tsukamoto D et al (2013) Supported Au–Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew Chem Int Ed Engl 52:5295–9. https://doi.org/10.1002/anie.201301669

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Destro .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Destro, P. (2019). Introduction. In: Colloidal Nanoparticles for Heterogeneous Catalysis. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03550-1_1

Download citation

Publish with us

Policies and ethics