Skip to main content

The Hopf Algebra of Feynman Diagrams

  • Chapter
  • First Online:
Graphs in Perturbation Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 598 Accesses

Abstract

The content of this chapter is partially based on the author’s article (Borinsky, Lett Math Phys 106(7):879–911, 2016) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted by permission from Springer Nature, Letters in Mathematical Physics, 106, 7, Algebraic Lattices in QFT Renormalization by Michael Borinsky, Copyright 2016.

  2. 2.

    Because the coproduct is not of the form \(\Delta \Gamma = \mathbbm {1}\otimes \Gamma + \Gamma \otimes \mathbbm {1}+ \widetilde{\Delta }\), the elements in the kernel of \(\widetilde{\Delta }\) are also called skewprimitive. As we can always divide out the ideal which sets all residues to \(\mathbbm {1}\), we will not treat this case differently.

  3. 3.

    I wish to thank Erik Panzer for quickly coming up with the explicit counterexample in Fig. 6.3a.

  4. 4.

    Note that all residues \(r \in \mathcal {R}^*\) map to \(\mathbbm {1}_\mathcal {H}^\text {P}\) under \(\chi _D\), \(\chi _D(r) = \mathbbm {1}_\mathcal {H}^\text {P}\).

References

  1. Borinsky M (2016) Algebraics lattices in qft renormalization. Lett Math Phys 106(7):879–911

    Article  ADS  MathSciNet  Google Scholar 

  2. Yeats K (2016) Combinatorial perspective on quantum field theory, vol 15. Springer, Berlin

    MATH  Google Scholar 

  3. Weinberg S (1960) High-energy behavior in quantum field theory. Phys Rev 118:838–849

    Article  ADS  MathSciNet  Google Scholar 

  4. Connes A, Kreimer D (2000) Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun Math Phys 210(1):249–273

    Article  ADS  MathSciNet  Google Scholar 

  5. Manchon D (2004) Hopf algebras, from basics to applications to renormalization. arXiv:math/0408405

  6. Borinsky M (2014) Feynman graph generation and calculations in the Hopf algebra of Feynman graphs. Comput Phys Commun 185(12):3317–3330

    Article  ADS  Google Scholar 

  7. Kock J (2015) Perturbative renormalisation for not-quite-connected bialgebras. Lett Math Phys 105(10):1413–1425

    Article  ADS  MathSciNet  Google Scholar 

  8. Brown F, Kreimer D (2013) Angles, scales and parametric renormalization. Lett Math Phys 103(9):933–1007

    Article  ADS  MathSciNet  Google Scholar 

  9. Figueroa H, Gracia-Bondia JM (2005) Combinatorial Hopf algebras in quantum field theory I. Rev Math Phys 17(08):881–976

    Article  ADS  MathSciNet  Google Scholar 

  10. Schmitt WR (1994) Incidence Hopf algebras. J Pure Appl Algebr 96(3):299–330

    Article  MathSciNet  Google Scholar 

  11. Stanley RP (2011) Enumerative combinatorics, vol 1, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  12. Joni SA, Rota G-C (1979) Coalgebras and bialgebras in combinatorics. Stud Appl Math 61(2):93–139

    Article  MathSciNet  Google Scholar 

  13. Bergeron N, Sottile F (1999) Hopf algebras and edge-labeled posets. J Algebr 216(2):641–651

    Article  MathSciNet  Google Scholar 

  14. Berghoff M (2015) Wonderful compactifications in quantum field theory. Commun Number Theory Phys 9(3):477–547

    Article  MathSciNet  Google Scholar 

  15. Stern M (1999) Semimodular lattices: theory and applications. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Connes A, Kreimer D (2001) Renormalization in quantum field theory and the Riemann-Hilbert problem II: the \(\beta \)-function, diffeomorphisms and the renormalization group. Commun Math Phys 216(1):215–241

    Article  ADS  MathSciNet  Google Scholar 

  17. Cvitanovic P, Lautrup B, Pearson RB (1978) Number and weights of Feynman diagrams. Phys Rev D 18:1939–1949

    Article  ADS  Google Scholar 

  18. Argyres EN (2001) Zero-dimensional field theory. Eur Phys J C-Part Fields 19(3):567–582

    Article  ADS  MathSciNet  Google Scholar 

  19. Ehrenborg R (1996) On posets and Hopf algebras. Adv Math 119(1):1–25

    Article  MathSciNet  Google Scholar 

  20. Kreimer D (2006) Anatomy of a gauge theory. Ann Phys 321(12):2757–2781

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Borinsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borinsky, M. (2018). The Hopf Algebra of Feynman Diagrams. In: Graphs in Perturbation Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03541-9_6

Download citation

Publish with us

Policies and ethics