Skip to main content

Introduction

  • Chapter
  • First Online:
Graphs in Perturbation Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 545 Accesses

Abstract

This thesis is about graphs and two algebraic structures which can be associated with them. The first algebraic structure appears while enumerating large graphs. It captures the asymptotic behaviour of power series associated to graph counting problems. Second is the Hopf algebraic structure which gives an algebraic description of subgraph structures of graphs. The Hopf algebraic structure permits the explicit enumeration of graphs with constraints for the allowed subgraphs. Together both structures give an algebraic formulation of large graphs with forbidden subgraphs. The detailed analysis of both these structures is motivated by perturbative quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Connected and bridgeless.

  2. 2.

    The asymptotic expansion of the coefficients of a first order asymptotic expansion is a second order asymptotic expansion and so on.

References

  1. Dyson FJ (1952) Divergence of perturbation theory in quantum electrodynamics. Phys Rev 85(4):631–632

    Article  ADS  MathSciNet  Google Scholar 

  2. Bender CM, Wu TT (1969) Anharmonic oscillator. Phys Rev 184(5):1231–1260

    Article  ADS  MathSciNet  Google Scholar 

  3. Bender CM, Wu TT (1973) Anharmonic oscillator. II. a study of perturbation theory in large order. Phys Rev D 7(6):1620–1636

    Article  ADS  Google Scholar 

  4. Le Guillou JC, Zinn-Justin J (2012) Large-order behaviour of perturbation theory, vol 7. Elsevier

    Google Scholar 

  5. Alvarez G (2004) Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well. J Math Phys 45(8):3095–3108

    Article  ADS  MathSciNet  Google Scholar 

  6. Garoufalidis S (2012) Asymptotics of the instantons of Painlevé I. Int Math Res Not 2012(3):561–606

    Article  Google Scholar 

  7. Argyres PC, Ünsal M (2012) The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects. J High Energy Phys 2012(8):63

    Google Scholar 

  8. Dunne GV, ünsal M (2014) Generating nonperturbative physics from perturbation theory. Phys Rev D 89(4):041701

    Google Scholar 

  9. Marino M (2014) Lectures on non-perturbative effects in large N gauge theories, matrix models and strings. Fortschritte der Physik 62(5-6):455–540

    Article  ADS  MathSciNet  Google Scholar 

  10. Lautrup B (1977) On high order estimates in QED. Phys Lett B 69(1):109–111

    Article  ADS  MathSciNet  Google Scholar 

  11. Zichichi A (1979) The whys of subnuclear physics. Springer, Berlin

    Chapter  Google Scholar 

  12. Lipatov LN (1977) Divergence of the perturbation theory series and the quasiclassical theory. Sov Phys JETP 45(2):216–223

    ADS  MathSciNet  Google Scholar 

  13. Suslov IM (2005) Divergent perturbation series. J Exp Theor Phys 100(6):1188–1233

    Article  ADS  Google Scholar 

  14. Kompaniets MV, Panzer E (2017) Minimally subtracted six-loop renormalization of \(O(n)\)-symmetric \(\phi ^{4}\) theory and critical exponents. Phys Rev D 96(3):036016

    Google Scholar 

  15. Schnetz O (2018) Numbers and functions in quantum field theory. Phys Rev D 97(8):085018

    Google Scholar 

  16. McKane AJ, Wallace DJ, de Alcantara Bonfim DF (1984) Non-perturbative renormalisation using dimensional regularisation: applications to the epsilon expansion. J Phys A: Math Gen 17(9):1861–1876

    Google Scholar 

  17. McKane AJ, Wallace DJ (1978) Instanton calculations using dimensional regularisation. J Phys A: Math Gen 11(11):2285–2304

    Article  ADS  MathSciNet  Google Scholar 

  18. Affleck I (1980) Testing the instanton method. Phys Lett B 92(1–2):149–152

    Article  ADS  MathSciNet  Google Scholar 

  19. Dunne GV, Ünsal M (2012) Resurgence and trans-series in quantum field theory: the \({\mathbb{C}}{\mathbb{P}}^{N-1}\) model. J High Energy Phys 2012(11):1–86

    Article  Google Scholar 

  20. Kreimer D (2006) Anatomy of a gauge theory. Ann Phys 321(12):2757–2781

    Article  ADS  MathSciNet  Google Scholar 

  21. Yeats K (2008) Growth estimates for Dyson-Schwinger equations. Ph.D. thesis. Boston University

    Google Scholar 

  22. Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    Google Scholar 

  23. Bergeron F, Labelle G, Leroux P (1998) Combinatorial species and tree-like structures, vol 67. Cambridge University Press, Cambridge

    Google Scholar 

  24. Connes A, Kreimer D (2000) Renormalization in quantum field theory and the Riemann–Hilbert problem i: the Hopf algebra structure of graphs and the main theorem. Commun Math Phys 210(1):249–273

    Article  ADS  MathSciNet  Google Scholar 

  25. Bender EA, Canfield ER (1978) The asymptotic number of labeled graphs with given degree sequences. J Comb Theory, Ser A 24(3):296–307

    Article  MathSciNet  Google Scholar 

  26. Hurst CA (1952) The enumeration of graphs in the Feynman-Dyson technique. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol 214. The Royal Society, pp 44–61

    Google Scholar 

  27. Cvitanović P, Lautrup B, Pearson RB (1978) Number and weights of Feynman diagrams. Phys Rev D 18(6):1939–1949

    Article  ADS  Google Scholar 

  28. Bender CM, Caswell WE (1978) Asymptotic graph counting techniques in 2N field theory. J Math Phys 19(12):2579–2586

    Article  ADS  MathSciNet  Google Scholar 

  29. Goldberg H, Vaughn MT (1991) Tree and nontree multiparticle amplitudes. Phys Rev Lett 66(10):1267–1270

    Article  ADS  MathSciNet  Google Scholar 

  30. Argyres EN (2001) Zero-dimensional field theory. Eur Phys J C-Part Fields 19(3):567–582

    Article  ADS  MathSciNet  Google Scholar 

  31. Molinari LG, Manini N (2006) Enumeration of many-body skeleton diagrams. Eur Phys J B-Cond Matter Complex Syst 51(3):331–336

    Article  Google Scholar 

  32. Basar G, Dunne GV, Ünsal M (2013) Resurgence theory, ghost-instantons, and analytic continuation of path integrals. J High Energy Phys 2013(10)

    Google Scholar 

  33. Berry MV, Howls CJ (1991) Hyperasymptotics for integrals with saddles. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol 434. The Royal Society, pp 657–675

    Google Scholar 

  34. Dingle RB (1973) Asymptotic expansions: their derivation and interpretation, vol 48. Academic Press London, London

    Google Scholar 

  35. Albert MH, Atkinson MD, Klazar M (2003) The enumeration of simple permutations. J Integer Seq 6(4). Art-03

    Google Scholar 

  36. Bender EA (1975) An asymptotic expansion for the coefficients of some formal power series. J Lond Math Soc 2(3):451–458

    Article  MathSciNet  Google Scholar 

  37. Écalle J (1981) Les fonctions résurgentes. In: Publ. math. d’Orsay/Univ. de Paris, Dep. de math

    Google Scholar 

  38. Aniceto I, Schiappa R, Vonk M (2012) The resurgence of instantons in string theory. Commun Number Theory Phys 6(2):339–496

    Article  MathSciNet  Google Scholar 

  39. Mitschi C, Sauzin D (2016) Divergent series, summability and resurgence i. Springer, Berlin

    Book  Google Scholar 

  40. Manchon D (2004) Hopf algebras, from basics to applications to renormalization. arXiv:0408405

  41. van Suijlekom WD (2007) Renormalization of gauge fields: a hopf algebra approach. Commun Math Phys 276(3):773–798

    Article  ADS  MathSciNet  Google Scholar 

  42. Jackson DM, Kempf A, Morales AH (2017) A robust generalization of the Legendre transform for qft. J Phys A: Math Theor 50(22):225201

    Article  ADS  MathSciNet  Google Scholar 

  43. Berghoff M (2015) Wonderful compactifications in quantum field theory. Commun Number Theory Phys 9(3):477–547

    Article  MathSciNet  Google Scholar 

  44. Figueroa H, Gracia-Bondia JM (2005) Combinatorial Hopf algebras in quantum field theory I. Rev Math Phys 17(08):881–976

    Article  MathSciNet  Google Scholar 

  45. Schmitt WR (1994) Incidence Hopf algebras. J Pure Appl Algebra 96(3):299–330

    Article  MathSciNet  Google Scholar 

  46. Kreimer D, Yeats K (2006) An étude in non-linear Dyson-Schwinger equations. Nuclear Phys B Proc Suppl 160:116–121

    Article  ADS  MathSciNet  Google Scholar 

  47. Kreimer D, Yeats K (2008) Recursion and growth estimates in renormalizable quantum field theory. Commun Math Phys 279(2):401–427

    Article  ADS  MathSciNet  Google Scholar 

  48. Krüger O, Kreimer D (2015) Filtrations in Dyson-Schwinger equations: Next-to j-leading log expansions systematically. Ann Phys 360:293–340

    Article  MathSciNet  Google Scholar 

  49. Simon B (1982) Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int J Quantum Chem 21(1):3–25

    Article  Google Scholar 

  50. Lovász L (2012) Large networks and graph limits, vol 60. American Mathematical Society Providence, Providence

    Google Scholar 

  51. Berry MV (1990) Hyperasymptotics. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol 430. 1880. The Royal Society, pp 653–668

    Google Scholar 

  52. Brown F, Kreimer D (2013) Angles, scales and parametric renormalization. Lett Math Phys 103(9):933–1007

    Article  ADS  MathSciNet  Google Scholar 

  53. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1):17–60

    MathSciNet  MATH  Google Scholar 

  54. de Panafieu E (2016) Analytic combinatorics of connected graphs. arXiv:1605.08597

  55. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  ADS  MathSciNet  Google Scholar 

  56. Dembo A, Montanari A (2010) Ising models on locally tree-like graphs. Ann Appl Probab 20(2):565–592

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Borinsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borinsky, M. (2018). Introduction. In: Graphs in Perturbation Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03541-9_1

Download citation

Publish with us

Policies and ethics