Skip to main content

Myosin Motors

  • Chapter
  • First Online:
  • 1087 Accesses

Abstract

The last decade of the twentieth century was a fertile period for muscle research. Not only did it yield the atomic structures of actin and myosin-S1, but it spawned a number of new techniques, including optical trapping, evanescent wave and atomic force spectroscopies, for observing the working strokes of a single molecular motor such as myosin, kinesin and dynein. Muscle myosin II is part of a larger family of myosin motors that perform different cellular tasks. Many of them, including myosin-V, are processive motors which walk many steps along F-actin before falling off. Actin-myosin kinetics in the optical trap determine how the apparent working stroke may be affected by target zones on F-actin. Moving traps may be used to measure myosin stiffness and the lifetimes of actomyosin states as a function of load. Three critical experiments require interpretation: why does the ATP sliding distance in motility assays exceed the working stroke, why are Cy3-ATP detachment events not always coordinated with ATP binding, and why does a single myosin-II on a fine cantilever walk for several 5.3 nm steps on F-actin, which suggests that myosin moves by a ratchet mechanism rather than a swinging lever-arm. Finally, recent experiments on myosin-V suggest that its lever-arm is uniquely suited for making 36 nm steps on actin.

I came here confused about actin and myosin. Now I am still confused, but at a higher level.

Sir Andrew Huxley F.R.S., on summing up the symposium on Frontiers in Molecular Motors, Osaka, Japan, hosted by Toshio Yanagida (Cyranoski 2000).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamovic I, Mijailovich SM, Karplus M (2008) The elastic properties of the structurally characterized myosin II S2 subdomain: a molecular dynamics and normal mode analysis. Biophys J 94:3779–3789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K, Ishiwata S (2002) Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9:464–467

    Article  CAS  PubMed  Google Scholar 

  • Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276:917–922

    Article  CAS  PubMed  Google Scholar 

  • Baker JE, Brust-Mascher I, Ramachandran S, LaConte IFW, Thomas DD (1998) A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci USA 95:2944–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell GI (1978) Models for the specfic adhesion of cells to cells. Science 200:618–627

    Article  CAS  PubMed  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block SM, Svoboda K (1995) Analysis of high-resolution recordings of motor movement. Biophys J 68:230S–241S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdieu L, Duke T, Elowitz MB, Winkelmann DA, Leibler S, Libchaber A (1995) Spiral defects in motility assays: a measure of motor protein force. Phys Rev Lett 75:176–179

    Article  CAS  PubMed  Google Scholar 

  • Bozic SM (1979) Digital and Kalman Filtering. Edward Arnold, London

    Google Scholar 

  • Brenner B (1991) Rapid dissociation and reassociation of actomyosin crossbridges during force generation: a newly observed facet of cross-bridge action in muscle. Proc Natl Acad Sci USA 88:10490–10494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner B (2006) The stroke size of myosins: a reevaluation. J Muscle Res Cell Motil 27:173–187

    Article  CAS  PubMed  Google Scholar 

  • Bruno WJ, Ullah G, Mak D-OD, Pearson JE (2013) Automated maximum likelihood separation of signal from baseline in noisy quantal data. Biophys J 105:68–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton K (1992) Myosin step size: estimates from motility assays and shortening muscle. J Muscle Res Cell Motil 13:590–607

    Article  CAS  PubMed  Google Scholar 

  • Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci USA 103:87–92

    Article  CAS  PubMed  Google Scholar 

  • Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Carter BC, Vershinin M, Gross SP (2008) A comparison of step-detection methods: how well can you do? Biophys J 94:306–319

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  Google Scholar 

  • Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D (1998) In: Sakmann E, Neher E (eds) Single-channel recording. Plenum, New York/London

    Google Scholar 

  • Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski D (2000) Swimming against the tide. Nature 408:764–766

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz E, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67

    Article  PubMed  CAS  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–119

    Article  CAS  PubMed  Google Scholar 

  • Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404

    Article  CAS  PubMed  Google Scholar 

  • Fortune NS, Ranatunga KW, Geeves MA (1994) The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J Muscle Res Cell Motil 15:309–318

    PubMed  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M, Saito KL, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by singe myosin molecules in aqueous solution. Nature 374:555–559

    Article  CAS  PubMed  Google Scholar 

  • Gardiner C (2004) Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer Series in Synergetics. Springer-Verlag, Berlin/New York

    Book  Google Scholar 

  • Guilford WH, Dupuis DE, Kennedy G, Wu JR, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72:1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff, The Hague

    Google Scholar 

  • Harada Y, Noguchi A, Kishino A, Yanagida T (1987) Sliding movement of single actin filaments on one-headed myosin filaments. Nature 326:805–808

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216:49–68

    Article  CAS  PubMed  Google Scholar 

  • Hartman MA, Spudich JA (2004) The myosin superfamily at a glance. J Cell Sci 125:1627–1632

    Article  CAS  Google Scholar 

  • He Z-H, Chillingworth RK, Brune M, Corrie JET, Webb MR, Ferenczi MA (1999) The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. J Physiol (London) 517(3):839–854

    Article  CAS  Google Scholar 

  • Higuchi H, Goldman YE (1991) Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres. Nature 352:352–354

    Article  CAS  PubMed  Google Scholar 

  • Hodge T, Cope JTV (2000) A myosin family tree. J Cell Sci 113:3353–3354

    CAS  PubMed  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Assoc. Inc., Sunderland, p104

    Google Scholar 

  • Howard J, Spudich JA (1996) Is the lever arm of myosin a molecular elastic element? Proc Natl Acad Sci USA 93:4462–4464

    CAS  PubMed  Google Scholar 

  • Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92:161–171

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Liu X, Katayama E, Uyeda TQP (1999) Cooperativity between two heads of Dictyostelium myosin in in vitro motility and ATP hydrolysis. Biophys J 76:985–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaki M, Iwane AH, Shimokawa T, Cooke R, Yanagida T (2009) Brownian search and catch mechanism for myosin VI steps. Nat Chem Biol 5:403–405

    Article  CAS  PubMed  Google Scholar 

  • Jaswinski AH (1970) Stochastic processes and filtering theory. Academic, New York/London

    Google Scholar 

  • Kaya M, Higuchi H (2010) Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science 329:686–689

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Tokunaga M, Esaki S, Iwane AH, Yanagida T (2005) Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to actin-myosin interactions. Prog Biophys Mol Biol 77:45–72

    Article  CAS  PubMed  Google Scholar 

  • Kolomeisky AB, Fisher ME (2003) A simple kinetic model describes the processivity of myosin-V. Biophys J 84:1642–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83:8272–6276

    Article  Google Scholar 

  • Lewalle A, Steffen W, Ouyang Z, Sleep J (2008) Single-molecule measurement of the stiffness of the rigor myosin bond. Biophys J 94:2160–2169

    Article  CAS  PubMed  Google Scholar 

  • Mehta AD, Finer JT, Simmons RM (1997) Detection of snigle molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci USA 94:7927–7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    Article  CAS  PubMed  Google Scholar 

  • Milescu LS, Yildiz A, Selvin PR, Sachs F (2006) Extacting dwell time sequences from processive molecular motor data. Biophys J 91:3135–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995) Movement and force produced by a single myosin head. Nature 378:209–212

    Article  CAS  PubMed  Google Scholar 

  • Moore JR, Krementsova EB, Trybus KM, Warshaw DM (2004) Does the myosin neck region act as a lever? J Muscle Res Cell Motil 25:28–35

    Article  Google Scholar 

  • Nie C-M, Sasi M, Terada TP (2014) Conformational flexibility of loops of myosin enhances the global bias in the actin-myosin interaction landscape. Phys Chem Chem Phys 16:6441–6447

    Article  CAS  PubMed  Google Scholar 

  • Nishizaka T, Miyata H, Yoshikawa H, Ishiwata S, Kinosita K Jr (1995) Unbinding force of a single motor molecule of muscle studied by optical tweezers. Nature 377:251–254

    Article  CAS  PubMed  Google Scholar 

  • Nishizaka T, Seo R, Tadakuma H, Kinsoita K Jr, Ishiwata S (2000) Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. Biophys J 79:962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115

    Article  Google Scholar 

  • Patlak JB (1993) Measuring kinetics of complex single ion-channel data using mean-variance histograms. Biophys J 65:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of motors rather than motor force or stroke size. Cell 131:784–795

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Purcell TJ, Morris C, Spudich JA, Sweeney HL (2002) Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci USA 99:14159–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–285

    Article  Google Scholar 

  • Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Fischetti RG, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:578–581

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Wang F, Schmitz S, Xu Y, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278:29201–29207

    Article  CAS  PubMed  Google Scholar 

  • Schaller V, Weber C, Semmrich C, Frey S, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73–77

    Article  CAS  PubMed  Google Scholar 

  • Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496:3–22

    Article  CAS  PubMed  Google Scholar 

  • Sleep J, Lewalle A, Smith DA (2006) Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiment and crystal structures. Proc Natl Acad Sci USA 103:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DA (1998a) A quantitative method for the detection of edges in noisy time series. Philos Trans R Soc B 353:1969–1981

    Article  CAS  Google Scholar 

  • Smith DA (1998b) Direct tests of muscle cross-bridge theories: predictions of a Brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament. Biophys J 75:2996–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DA (2004) How processive is the myosin motor? J Muscle Res Cell Motil 25:215–217

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Steffen W, Simmons RM, Sleep J (2001) Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-hidden-Markov method. Biophys J 81:2795–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen W, Smith DA, Simmons RM, Sleep J (2001) Mapping the actin filament with myosin. Proc Natl Acad Sci USA 98:14949–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranneby D, Walker W (2004) Digital signal processing and applications, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Sweeney HL, Houdusse A (2004) The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc B 359:1829–1841

    Article  CAS  Google Scholar 

  • Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90:1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Terada TP, Sasai M (2010) Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor. Proc Natl Acad Sci USA 107:7769–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DD, Ramachandran S, Roopnarine O, Hayuden DW, Ostap EM (1995) The mechanism of force generation in muscle: a disorder-to-order transition, coupled to internal structural changes. Biophys J 68:135s–141s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima YY, Kron SJ, Spudich JA (1990) The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proc Natl Acad Sci USA 87:7130–7134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tregear RT, Reedy MC, Goldman YE, Taylor KA, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Reedy MK (2004) Cross-bridge number, position and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 86:3009–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiavaliaris G, Fujita-Becker S, Manstein DJ (2004) Molecular engineering of a backwards-moving myosin motor. Nature 427:558–561

    Article  CAS  PubMed  Google Scholar 

  • Tyska MJ, Warshaw DM (2002) The myosin power stroke. Cell Motil Cytoskeleton 51:1–15

    Article  CAS  PubMed  Google Scholar 

  • Tyska MJ, Dupuis DFE, Guilford WH, Patlak JH, Waller GS, Trybus KM, Warshaw DM, Lowey S (1999) Two heads are better than one for generating force and motion. Proc Natl Acad Sci USA 96:4402–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S (2004) Mechanochemical couping of two substeps in a single myosin V motor. Nat Struct Biol 11:877–883

    Article  CAS  Google Scholar 

  • Uyeda TQP, Kron SJ, Spudich JA (1990) Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214:699–710

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Bartoo ML, White DCS, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75:1424–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2001) The gated gait of the processive motor, myosin V (2001) Nat Cell Biol 4:59–65

    Article  CAS  Google Scholar 

  • Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869

    Article  CAS  PubMed  Google Scholar 

  • Walker M, Zhang X-Z, Jiang W, Trinick J, White HD (1999) Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc Natl Acad Sci USA 96:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker ML, Burgess SA, Sellers JR, Wang F, Hammer JA III, Trinick J, Knight PJ (2000) Two-headed binding of a processive myosin to F-actin. Nature 405:804–807

    Article  CAS  PubMed  Google Scholar 

  • Warshaw DM, Hayes F, Gaffney D, Lauzon AM, Wu J, Kennedy G, Trybus K, Lowey S, Berger C (1998) Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci USA 95:8034–8039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherburn CE (1968) A first course in mathematical statistics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safter D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366–369

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Harada Y, Kodama T (1991) Chemomechanical coupling in actomyosin system: an approach by in vitro movement assay and kinetic analysis of ATP hydrolysis by shortening myofibrils. Adv Biophys 27:237–257

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5nm localization. Science 300:2061–2065

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kawai M (1994) BDM affects nucleotide binding and force generation steps of the crossbridge cycle in rabbit psoas muscle fibers. Am J Phys 266:C437–C447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aitchison Smith, D. (2018). Myosin Motors. In: The Sliding-Filament Theory of Muscle Contraction. Springer, Cham. https://doi.org/10.1007/978-3-030-03526-6_6

Download citation

Publish with us

Policies and ethics