Skip to main content

Coordination/Organometallic Compounds and Composites of Carbon Allotropes

  • Chapter
  • First Online:
Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Abstract

Metal complexes have a lot of useful applications in organic and organometallic chemistry, catalysis [1], medicine as anticancer pharmaceutics and for drug delivery [2], various biological systems [3], polymers [4] and dyes, separation of isotopes [5], and heavy metals [6], among many other uses. Sometimes they are applied for increasing solubility [7, 8] of classic objects, carbon nanotubes (CNTs), which form bundle-like structures with very complex morphologies with a high number of Van der Waals interactions, causing extremely poor solubility in water or organic solvents. Metal complexes are also able to serve as precursors to fill CNTs with metals [9] or oxides [10], to decorate CNTs with metal nanoparticles [11], as well as to be encapsulated by CNTs [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The image above is reproduced with permission of Elsevier Science (Chemical Physics Letters, 541, 81–84 (2012)).

  2. 2.

    Porphyrin and phthalocyanine composites with carbon nanotubes will be discussed below in separated sections.

  3. 3.

    See also information below about other terpyridine complexes, noncovalently attached to CNTs through pyrene moiety.

  4. 4.

    Reproduced with permission of the Royal Society of Chemistry

  5. 5.

    Terpyridine-containing complexes can also be covalently attached to CNTs; see above.

  6. 6.

    The image above is reproduced with permission of Nature (Nat. Chem. 9(1), 33–38 (2017)).

  7. 7.

    See chapter above, dedicated to the graphene properties.

  8. 8.

    The image above is reproduced with permission of the American Chemical Society (Inorg. Chem., 55(17), 8277–8280 (2016)).

  9. 9.

    The image above is reproduced with permission of the Elsevier Science (International Journal of Pharmaceutics, 514(1), 41–51 (2016)).

  10. 10.

    The image above is reproduced with permission of the Wiley (Chemistry – A European Journal, 12(2), 376–387 (2005)).

  11. 11.

    The image above is reproduced with permission of Nature (Nat. Nanotech., 2, 156–161 (2007)).

  12. 12.

    The image above is reproduced with permission of the American Chemical Society (ACS Nano, 9(8), 8194–8205 (2015)).

  13. 13.

    The image above is reproduced with permission of the Royal Society of Chemistry (J. Mater. Chem. A, 3, 24,428–24,436 (2015)).

  14. 14.

    The image above is reproduced with permission of the Wiley (ChemPhysChem, 16(15), 3214–3232(2015)).

  15. 15.

    See also the section on the MOF-derived nanocarbons.

  16. 16.

    UMCM-1 (University of Michigan Cryst. Material-1), a mesoporous material with unprecedented levels of microporosity, arises from the coordination copolymn. of a dicarboxylate and a tricarboxylate linker mediated by Zn. See details in: A crystalline mesoporous coordination copolymer with high microporosity. Angewandte Chemie, International Edition, 2008, 47 (4), 677–680.

  17. 17.

    HKUST-1 (“Hong Kong University of Science and Technology”) is a metal organic framework (MOF) made up of copper nodes with 1,3,5-benzenetricarboxylic acid struts between them (see http://www.chemtube3d.com/solidstate/MOF-HKUST-1.html). This MOF is frequently used for obtaining graphite hybrid materials (Langmuir, 2011, 27, 10234–10242).

References

  1. P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 pp

    Book  Google Scholar 

  2. W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp

    Google Scholar 

  3. N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp

    Google Scholar 

  4. A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA, 1999), 424 pp

    Google Scholar 

  5. B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, Oxford, 2007), 316 pp

    Google Scholar 

  6. H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, Interface science and technology, vol 6 (Elsevier Science, New York, 2005), 282 pp

    Chapter  Google Scholar 

  7. D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)

    Article  CAS  Google Scholar 

  8. X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)

    Article  CAS  Google Scholar 

  9. J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)

    Article  CAS  Google Scholar 

  10. M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)

    Article  CAS  Google Scholar 

  11. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)

    Article  CAS  Google Scholar 

  12. D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)

    Article  CAS  Google Scholar 

  13. C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, New York, 2012), 260 pp

    Book  Google Scholar 

  14. P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2011), 314 pp

    Google Scholar 

  15. L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)

    Article  CAS  Google Scholar 

  16. S. Sarkar, R. Cort Haddon, Organometallic Complexes of Graphene and Carbon Nanotubes: Introducing New Perspectives in Atomtronics, Spintronics, High Mobility Graphene Electronics and Energy Conversion Catalysis. Cornell University Library, 2014, arXiv:1409.5194

    Google Scholar 

  17. R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)

    Article  CAS  Google Scholar 

  18. G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: Functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)

    Article  CAS  Google Scholar 

  19. A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)

    Article  CAS  Google Scholar 

  20. Y. Wang, Y. Wu, J. Xie, H. Gea, X. Hu, Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Analyst 138, 5113–5120 (2013)

    Article  CAS  Google Scholar 

  21. Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Metal–organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491–494 (2011)

    Article  CAS  Google Scholar 

  22. A. Okia, L. Adamsa, Z. Luod, E. Osayamena, P. Bineyb, V. Khabashesku, Functionalization of single-walled carbon nanotubes with N-[3-(trimethoxysilyl)propyl]ethylenediamine and its cobalt complex. J. Phys. Chem. Solids 69(5–6), 1194–1198 (2008)

    Article  CAS  Google Scholar 

  23. M. Soleimani, M. Ghahraman Afshar, A. Sedghi, Amino-functionalization of multiwall carbon nanotubes and its use for solid phase extraction of mercury ions from fish sample. ISRN Nanotechnol, 2013, Article ID 674289, 8 pp (2013)

    Google Scholar 

  24. S. Hyun Yoon, J. Hoon Han, B. Kun Kim, H. Nim Choi, W.-Y. Lee, Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on platinized carbon nanotube–zirconia–Nafion composite films. Electroanalysis 22(12), 1349–1356 (2010)

    Article  CAS  Google Scholar 

  25. Y. Tao, Z.-J. Lin, X.-M. Chen, X.-L. Huang, M. Oyama, X. Chen, X.-R. Wang, Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sensors Actuators B 129, 758–763 (2008)

    Article  CAS  Google Scholar 

  26. D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)

    Article  CAS  Google Scholar 

  27. R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in ruthenium 2,2′-bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)

    Article  CAS  Google Scholar 

  28. S.A. Houston, N.S. Venkataramanan, A. Suvitha, N.J. Wheate. Loading of a phenanthroline-based platinum(II) complex onto the surface of a carbon nanotube via π–π stacking. Aust. J. Chem. Article ID: CH16067 (2016)

    Google Scholar 

  29. H. Li, J. Wu, Y.A. Jeilani, C.W. Ingram, I.I. Harruna, Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex. J. Nanopart. Res. 14(847) (2012)

    Google Scholar 

  30. S.-H. Hwang, C.N. Moorefield, L. Dai, G.R. Newkome, Functional nanohybrids constructed via complexation of multiwalled carbon nanotubes with novel hexameric metallomacrocyles. Chem. Mater. 18, 4019–4024 (2006)

    Article  CAS  Google Scholar 

  31. R. Rajaraoa, T.H. Kimb, B. Ramachandra Bhata, Multi-walled carbon nanotube bound nickel Schiff-base complexes as reusable catalysts for oxidation of alcohols. J. Coord. Chem. 65(15), 2671–2682 (2012)

    Article  CAS  Google Scholar 

  32. M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transit. Met. Chem. 34, 605–612 (2009)

    Article  CAS  Google Scholar 

  33. M. Salavati-Niasari, M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 255(5, Part 2), 2963–2970 (2008)

    Article  CAS  Google Scholar 

  34. M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and liquid phase oxidation of cyclohexane with hydrogen peroxide over oxovanadium(iv) Schiff-base tetradendate complex covalently anchored to multi-wall carbon nanotubes (mwnts). Bull. Kor. Chem. Soc. 30(2), 355–362 (2009)

    Article  CAS  Google Scholar 

  35. G. Magadur, J.-S. Lauret, G. Charron, F. Bouanis, E. Norman, V. Huc, C.-S. Cojocaru, S. Gomez-Coca, E. Ruiz, T. Mallah, Charge transfer and tunable ambipolar effect induced by assembly of Cu(II) binuclear complexes on carbon nanotube field effect transistor devices. J. Am. Chem. Soc. 134(18), 7896–7901 (2012)

    Article  CAS  Google Scholar 

  36. M. Navidi, B. Movassagh, S. Rayati, Multi-walled carbon nanotubes functionalized with a palladium(II)-Schiff base complex: A recyclable and heterogeneous catalyst for the copper-, phosphorous- and solvent-free synthesis of ynones, in 16th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2012

    Google Scholar 

  37. H.-J. Lee, W.S. Choib, T. Nguyenc, Y.B. Lee, H. Lee, An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49(15), 5150–5157 (2011)

    Article  CAS  Google Scholar 

  38. H. Liu, Y. Cui, P. Li, Y. Zhou, X. Zhu, Y. Tang, Y. Chen, T. Lu, Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: Immobilization, direct electrochemistry and electrocatalysis. Analyst 138, 2647–2653 (2013)

    Article  CAS  Google Scholar 

  39. C. Meyer, C. Besson, R. Frielinghaus, A.-K. Saelhoff, H. Flototto, L. Houben, P. Kogerler, C.M. Schneider, Covalent functionalization of carbon nanotubes with tetramanganese complexes. Phys. Status Solidi B 249(12), 2412–2415 (2012)

    Article  CAS  Google Scholar 

  40. X.M. Tu, S.L. Luo, X.B. Luo, Y.J. Zhao, L. Feng, J.H. Li, Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Sci. China Chem. 54(8), 1319–1326 (2011)

    Article  CAS  Google Scholar 

  41. C. Yang, Y. Chai, R. Yuan, J. Guo, F. Jia, Ligand-modified multi-walled carbon nanotubes for potentiometric detection of silver. Anal. Sci. 28, 275–282 (2012)

    Article  CAS  Google Scholar 

  42. C.C. Gheorghiu, B.F. Machado, C. Salinas-Martínez de Lecea, M. Gouygou, M.C. Román-Martínez, P. Serp, Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Trans. 43, 7455–7463 (2014)

    Article  CAS  Google Scholar 

  43. F. Frehill, J.G. Vos, S. Benrezzak, et al., Interconnecting carbon nanotubes with an inorganic metal complex. J. Am. Chem. Soc. 124, 13694–13695 (2002)

    Article  CAS  Google Scholar 

  44. S. Donck, J. Fize, E. Gravel, E. Doris, V. Artero, Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: Addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chem. Commun. 52, 11783–11786 (2016)

    Article  CAS  Google Scholar 

  45. E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: A linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, Article ID 745202, 12 pp (2011). doi:https://doi.org/10.1155/2011/745202

    Article  CAS  Google Scholar 

  46. Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes, US Patent 20130030175, 2013

    Google Scholar 

  47. S. Cambr, W. Wenseleers, J. Culin, S. Van Doorslaer, A. Fonseca, J.B. Nagy, E. Goovaerts, Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. ChemPhysChem 9, 1930–1941 (2008)

    Article  CAS  Google Scholar 

  48. O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)

    Article  CAS  Google Scholar 

  49. L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)

    Article  CAS  Google Scholar 

  50. D.M. Guldi, G.M.A. Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)

    Article  CAS  Google Scholar 

  51. I. Ruiz-Tagle, W. Orellana, Iron porphyrin attached to single-walled carbon nanotubes: Electronic and dynamical properties from ab initio calculations. Phys. Rev. B 82, 115406 (2010)

    Article  CAS  Google Scholar 

  52. J. Yu, S. Mathew, B.S. Flavel, J.S. Quinton, M.R. Johnston, J.G. Shapter, Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage, in International Conference on Nanoscience and Nanotechnology, ICONN 2008, pp. 176–179, 2008

    Google Scholar 

  53. D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)

    Article  CAS  Google Scholar 

  54. M. Mananghaya, Theoretical investigation of transition metal-incorporated porphyrin-induced carbon nanotubes: A potential hydrogen storage material. Int. J. Sci. Eng. Res. 4(1), 4 pp (2013)

    Google Scholar 

  55. D. Hyun Lee, W. Jun Lee, W. Jong Lee, S. Ouk Kim, Y.-H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502, 4 pp. (2011)

    Google Scholar 

  56. G. de la Torre, G. Bottari, T. Torres, Phthalocyanines and subphthalocyanines: Perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv. Energy Mater. 7(10), 1601700 (2017)

    Article  CAS  Google Scholar 

  57. Y. Gao, S. Li, X. Wang, et al., Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164(6), A1140–A1147 (2017)

    Article  CAS  Google Scholar 

  58. A.Y. Tolbin, V.N. Khabashesku, L.G. Tomilova, Synthesis of phthalocyanine tert-butyl ligand conjugates with fluorinecontaining single-walled carbon nanotubes having mobile ether bonds. Mendeleev Commun. 22, 59–61 (2012)

    Article  CAS  Google Scholar 

  59. I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int. J. Electrochem. Sci. 8, 1057–1066 (2013)

    CAS  Google Scholar 

  60. I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J. Nanosci. Nanotechnol. 13(1), 621–627 (2013)

    Article  CAS  Google Scholar 

  61. W. Orellana, Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study. Chem. Phys. Lett. 541, 81–84 (2012)

    Article  CAS  Google Scholar 

  62. Y. Yuan, B. Zhao, Y. Jeon, S. Zhong, S. Zhou, S. Kim, Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresourse Technol. 102(10), 5849–5854 (2011)

    Article  CAS  Google Scholar 

  63. G. Dong, M. Huang, L. Guan, Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 14, 2557–2559 (2012)

    Article  CAS  Google Scholar 

  64. P. d’Ambrosio, M. Carchesio, N. d’Alessandro, G. de la Torre, T. Torres, Linking Pd(II) and Ru(II) phthalocyanines to single-walled carbon nanotubes. Dalton Trans. 43, 7473–7747 (2014)

    Article  Google Scholar 

  65. Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. Siu-Wai Kong, Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 21, 3779–3787 (2011)

    Article  CAS  Google Scholar 

  66. L. Zhang, H. Yu, L. Liu, L. Wang, Study on the preparation of multi-walled carbon nanotube/phthalocyanine composites and their optical limiting effects. J. Compos. Mater. 48(8), 959–967 (2014)

    Article  CAS  Google Scholar 

  67. J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato, T. Torres, D.M. Guldi, Phthalocyanine−pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc. 132(45), 16202–16211 (2010)

    Article  CAS  Google Scholar 

  68. R.O. Ogbodu, E. Antunesa, T. Nyokong, Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 42, 10769–10777 (2013)

    Article  CAS  Google Scholar 

  69. K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)

    Article  CAS  Google Scholar 

  70. S. Park, S. Woong Yoon, K.-B. Lee, D. Jin Kim, Y. Hwan Jung, Y. Do, H.-j. Paik, I.S. Choi, Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006)

    Article  CAS  Google Scholar 

  71. D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)

    Article  CAS  Google Scholar 

  72. A.S. Lobach, R.G. Gasanov, E.D. Obraztsova, A.N. Shchegolikhin, V.I. Sokolov, Sidewall functionalization of single-walled carbon nanotubes by organometallic chromium-centered free radicals. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 287–297 (2005)

    Article  CAS  Google Scholar 

  73. Z. Zhang, C. Heath Turner, Structural and electronic properties of carbon nanotubes and graphenes functionalized with cyclopentadienyl–transition metal complexes: A DFT study. J. Phys. Chem. C 117(17), 8758–8766 (2013)

    Article  CAS  Google Scholar 

  74. A. Chernov, M. Havlicek, W. Jantsch, M.H. Rümmeli, A. Bachmatiuk, K. Yanagi, H. Peterlik, H. Kataura, F. Sauerzopf, R. Resel, F. Simon, H. Kuzmany, Ferromagnetic decoration in metal–semiconductor separated and ferrocene functionalized single-walled carbon nanotubes. Phys. Status Solidi B 249(12), 2323–2327 (2012)

    Article  CAS  Google Scholar 

  75. G. Zhang, S. Peng, Y. Shang, Z.-D. Yang, X. Cheng Zeng, Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. J. Mater. Chem. C 2, 10017–10030 (2014)

    Article  CAS  Google Scholar 

  76. X.-J. Huang, H.-S. Im, D.-H. Lee, H.-S. Kim, Y.-K. Choi, Ferrocene functionalized single-walled carbon nanotube bundles. Hybrid interdigitated construction film for L-glutamate detection. J. Phys. Chem. C 111, 1200–1206 (2007)

    Article  CAS  Google Scholar 

  77. N. Allali, V. Urbanova, V. Mamane, J. Waldbock, M. Etienne, M. Mallet, X. Devaux, B. Vigolo, Y. Fort, A. Walcarius, M. Noel, A.V. Soldatov, E. McRae, M. Dossot, Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices. Phys. Status Solidi B 249(12), 2349–2352 (2012)

    Article  CAS  Google Scholar 

  78. P. Singh, C. Menard-Moyon, J. Kumar, B. Fabre, S. Verma, A. Bianco, Nucleobase-pairing triggers the self-assembly of uracil-ferrocene on adenine functionalized multi-walled carbon nanotubes. Carbon 50, 3170–3177 (2012)

    Article  CAS  Google Scholar 

  79. A. Le Goff, F. Moggia, N. Debou, P. Jegou, V. Artero, M. Fontecave, B. Jousselme, S. Palacin, Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and p-stacking interactions and their relevance to glucose bio-sensing. J. Electroanal. Chem. 641, 57–63 (2010)

    Article  CAS  Google Scholar 

  80. S. Banerjee, S.S. Wong, Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Lett. 2(1), 49–53 (2002)

    Article  CAS  Google Scholar 

  81. F. Mercuri, A. Sgamellotti, Functionalization of carbon nanotubes with Vaska’s complex: A theoretical approach. J. Phys. Chem. B 110, 15291–15294 (2006)

    Article  CAS  Google Scholar 

  82. J.-P. Lellouche, M. Piran, L. Shahar, J. Grinblat, C. Pirlot, A reversible decoration of multi-walled carbon nanotubes (MWCNTs) by acyclic η4-(1E,3E)-dienyl-Fe(CO)3 complexes. J. Mater. Chem. 18, 1093–1099 (2008)

    Article  CAS  Google Scholar 

  83. L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34, 2086–2097 (2015)

    Article  CAS  Google Scholar 

  84. I. Kalinina, E. Bekyarova, S. Sarkar, F. Wang, M.E. Itkis, X. Tian, S. Niyogi, N. Jha, R.C. Haddon, Hexahapto-metal complexes of single-walled carbon nanotubes. Macromol. Chem. Phys. 213, 1001–1019 (2012)

    Article  CAS  Google Scholar 

  85. X. Tian, M.L. Moser, A. Pekker, S. Sarkar, J. Ramirez, E. Bekyarova, M.E. Itkis, R.C. Haddon, Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks. Nano Lett. 14, 3930–3937 (2014)

    Article  CAS  Google Scholar 

  86. S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chem. Sci. 2, 1326–1333 (2011)

    Article  CAS  Google Scholar 

  87. R.L. McSweeney, T.W. Chamberlain, E.S. Davies, A.N. Khlobystov, Single-walled carbon nanotubes as nanoelectrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 50, 14338–14340 (2014)

    Article  CAS  Google Scholar 

  88. P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103, 9 pp (2011)

    Article  CAS  Google Scholar 

  89. E.L. Sceats, J.C. Green, Charge transfer composites of bis(cyclopentadienyl) and bis(benzene) transition metal complexes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 75(24), 245441 (2007)

    Article  CAS  Google Scholar 

  90. M. Koleini, M. Paulsson, M. Brandbyge, Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes. Phys. Rev. Lett. 98, 197202, 4 pp (2007)

    Google Scholar 

  91. C.H. Li, A.M.C. Ng, C.S.K. Mak, A.B. Djurišić, W.K. Chan, Ruthenium complex containing block copolymer for the enhancement of carbon nanotube photoconductivity. ACS Appl. Mater. Interfaces 4(1), 74–80 (2012)

    Article  CAS  Google Scholar 

  92. E.W. McQueen, J.I. Golsmith, Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes. J. Am. Chem. Soc. 131(48), 17554–17556 (2009)

    Article  CAS  Google Scholar 

  93. P.D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. Engl. 50(6), 1371–1374 (2011)

    Article  CAS  Google Scholar 

  94. C. Vriamont, M. Devillers, O. Riant, S. Hermans, Catalysis with gold complexes immobilised on carbon nanotubes by π–π stacking interactions: Heterogeneous catalysis versus the boomerang effect. Chem. Eur. J. 19, 12009–12017 (2013)

    Article  CAS  Google Scholar 

  95. A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29(27), 8736–8742 (2013)

    Article  CAS  Google Scholar 

  96. S.-N. Ding, D. Shan, S. Cosnier, A. Le Goff, Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties. Chem. Eur. J. 18(37), 11564–11568 (2012)

    Article  CAS  Google Scholar 

  97. M. Blanco, P. Álvarez, C. Blanco, M.V. Jiménez, J. FernÁndez-Tornos, J.J. Pérez-Torrente, L.A. Oro, R. Menéndez, Enhanced hydrogen-transfer catalytic activity of iridium N-heterocyclic carbenes by covalent attachment on carbon nanotubes. ACS Catal. 3, 1307–1317 (2013)

    Article  CAS  Google Scholar 

  98. G. Liang, L. Zheng, S. Bao, B. Fei, H. Gao, F. Zhu, Q. Wu, Growing tiny flowers of organometallic polymers along carbon nanotubes. Macromolecules 48, 4115–4121 (2015)

    Article  CAS  Google Scholar 

  99. S.A.V. Jannuzzi, B. Martins, L.E.S.C. Huamanía, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017)

    CAS  Google Scholar 

  100. H. Cui, K. Zhang, Y. Zhang, Y. Sun, J. Wang, W. Zhang, J. Luong, Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens. Bioelectron. 46, 113–118 (2013)

    Article  CAS  Google Scholar 

  101. Y. Song, D. Su, Y. Shen, C. Gong, Y. Songa, L. Wang, Nitrogen-doped carbon foam as an efficient enzymatic biosensing platform for glucose sensing. Anal. Methods 8, 4547–4553 (2016)

    Article  CAS  Google Scholar 

  102. T.W. Chamberlain, J.C. Meyer, J. Biskupek, et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 3, 732–737 (2011)

    Article  CAS  Google Scholar 

  103. V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)

    Article  CAS  Google Scholar 

  104. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  105. A.K. Geim, Graphene: Status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  106. P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 pp

    Book  Google Scholar 

  107. W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp

    Google Scholar 

  108. N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp

    Google Scholar 

  109. B.J. Schultz, R.V. Dennis, V. Lee, S. Banerjee, An electronic structure perspective of graphene interfaces. Nanoscale 6, 3444–3466 (2014)

    Article  CAS  Google Scholar 

  110. B.J. Schultz, C. Jaye, P.D. Lysaght, D.A. Fischer, D. Prendergast, S. Banerjee, On chemical bonding and electronic structure of graphene–metal contacts. Chem. Sci. 4, 494–502 (2013)

    Article  CAS  Google Scholar 

  111. T. Abtew, B.-C. Shih, S. Banerjee, P. Zhang, Graphene-ferromagnet interfaces: Hybridization, magnetization and charge transfer. Nanoscale 5, 1902–1909 (2013)

    Article  CAS  Google Scholar 

  112. J. Wintterlin, M.-L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)

    Article  CAS  Google Scholar 

  113. G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)

    Article  CAS  Google Scholar 

  114. R.V. Dennis, V. Patil, J.L. Andrews, J.P. Aldinger, G.D. Yadav, S. Banerjee, Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2, 032001/1–23 (2015)

    Article  CAS  Google Scholar 

  115. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  116. L.R. DeJesus, R.V. Dennis, S.W. Depner, C. Jaye, D.A. Fischer, S. Banerjee, Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J. Phys. Chem. Lett. 4, 3144–3151 (2013)

    Article  CAS  Google Scholar 

  117. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998)

    Article  CAS  Google Scholar 

  118. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)

    Article  CAS  Google Scholar 

  119. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. Jin An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008)

    Article  CAS  Google Scholar 

  120. V. Georgakilas (ed.), Functionalization of Graphene, 1st edn. (Wiley-VCH, Weinheim, 2014), 424 pp

    Google Scholar 

  121. A. J. L. Pombeiro (ed.), Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, 1st edn. (Wiley, Hoboken, 2013), 736 pp

    Google Scholar 

  122. C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, ed. by C. N. R. Rao, A. K. Sood, 1st edn., (Wiley-VCH Verlag, Weinheim, 2013)

    Google Scholar 

  123. S. Sarkar, E. Bekyarova, R.C. Haddon, Chapter 9. Organometallic chemistry of carbon nanotubes and graphene, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, (Elsevier, Amsterdam, 2014)

    Chapter  Google Scholar 

  124. M.J. Lu, J. Li, X.Y. Yang, Y. Xu, X.A. Zhang, J. Yang, H. Hu, X.B. Wang, Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bull. 58(22), 2698–2710 (2013)

    Article  CAS  Google Scholar 

  125. C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46(10), 2275–2285 (2013)

    Article  CAS  Google Scholar 

  126. S.P. Lonkar, Y.S. Deshmukh, A.A. Abdala, Recent advances in chemical modifications of graphene. Nano Res. 8(4), 1039–1074 (2015)

    Article  CAS  Google Scholar 

  127. I. Ahmed, S.H. Jhung, Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 17(3), 136–146 (2014)

    Article  CAS  Google Scholar 

  128. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)

    Article  CAS  Google Scholar 

  129. J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114(12), 6323–6348 (2014)

    Article  CAS  Google Scholar 

  130. B. Garg, T. Bisht, Y.-C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules 19, 14582–14614 (2014)

    Article  CAS  Google Scholar 

  131. L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)

    Article  CAS  Google Scholar 

  132. M. Arab Fashapoyeh, M. Mirzaei, H. Eshtiagh-Hosseini, Recent advances in crystal engineering from nanoscience views: A brief review. Nanochem. Res. 2(1), 1–7 (2017)

    Google Scholar 

  133. Y. Wang, X. Ke, X. Zhou, J. Li, J. Ma, Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry. J. Saudi Chem. Soc. 20(1), S145–S152 (2016)

    Article  CAS  Google Scholar 

  134. S. Hou, Chelating agent modified graphene oxides, methods of preparation and use, US 2012/0330044 A1, 2012

    Google Scholar 

  135. Y. Yamada, Y. Suzuki, H. Yasuda, S. Uchizawa, K. Hirose-Takai, Y. Sato, K. Suenaga, S. Sato, Functionalized graphene sheets coordinating metal cations. Carbon 75, 81–94 (2014)

    Article  CAS  Google Scholar 

  136. I.L. Laure, S.V. Tkachev, E.Y. Buslaeva, E.V. Fatushina, S.P. Gubin, The coordination chemistry of graphene oxide: Interactions with metal ions in water. Russ. J. Coord. Chem. 39(7), 487–492 (2013)

    Article  CAS  Google Scholar 

  137. P. Dev, T.L. Reinecke, Stabilizing graphene-based organometallic sandwich structures through defect engineering. Phys. Rev. B 91, 035436 (2015)

    Article  CAS  Google Scholar 

  138. Q. Zhao, Y. Zhu, Z. Sun, Y. Li, G. Zhang, F. Zhang, X. Fan, Combining palladium complex and organic amine on graphene oxide for promoted Tsuji–Trost allylation. J. Mater. Chem. A 3, 2609–2616 (2015)

    Article  CAS  Google Scholar 

  139. R.C. Haddon, S. Sarkar, S. Niyogi, E. Bekyarova, M.E. Itkis, X. Tian, F. Wang, Organometallic chemistry of extended periodic π-electron systems, US 20130202515 A1, 2013

    Google Scholar 

  140. S. Sarkar, H. Zhang, J.-W. Huang, F. Wang, E. Bekyarova, C.N. Lau, R.C. Haddon, Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)

    Article  CAS  Google Scholar 

  141. S.M. Avdoshenko, I.N. Ioffe, G. Cuniberti, L. Dunsch, A.A. Popov, Organometallic complexes of graphene: Toward atomic spintronics using a graphene web. ACS Nano 5(12), 9939–9949 (2011)

    Article  CAS  Google Scholar 

  142. M. Chen, X. Tian, W. Li, E. Bekyarova, G. Li, M. Moser, R.C. Haddon, Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets. Chem. Mater. 28(7), 2260–2266 (2016)

    Article  CAS  Google Scholar 

  143. J. Dai, Y. Zhao, X. Wu, X. Cheng Zeng, J. Yang, Organometallic hexahapto-functionalized graphene: Band gap engineering with minute distortion to the planar structure. J. Phys. Chem. C 117, 22156–22161 (2013)

    Article  CAS  Google Scholar 

  144. P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103 (2011)

    Article  CAS  Google Scholar 

  145. Z. Zhang, C.H. Turner, Redox properties of graphenes functionalized with cyclopentadiene–transition metal complexes: A potential redox-active material. J. Phys. Chem. C 118(42), 24633–24640 (2014)

    Article  CAS  Google Scholar 

  146. L. Fan, Q. Zhang, K. Wang, F. Li, L. Niu, Ferrocene functionalized graphene: Preparation, characterization and efficient electron transfer toward sensors of H2O2. J. Mater. Chem. 22, 6165–6170 (2012)

    Article  CAS  Google Scholar 

  147. B. Choi, J. Lee, S. Lee, J.-H. Ko, K.-S. Lee, J. Oh, J. Han, Y.-H. Kim, I.S. Choi, S. Park, Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013)

    Article  CAS  Google Scholar 

  148. N. Xia, L. Liu, Z. Sun, B. Zhou, Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing. J. Nanomater. 2015, Article ID 892674, 9 pp (2015)

    Google Scholar 

  149. P. Wan, S. Yin, L. Liu, et al., Graphene carrier for magneto-controllable bioelectrocatalysis. Small 10(4), 647–652 (2014)

    Article  CAS  Google Scholar 

  150. S. Sabater, J.A. Mata, E. Peris, Immobilization of pyrene-tagged palladium and ruthenium complexes onto reduced graphene oxide: An efficient and highly recyclable catalyst for hydrodefluorination. Organometallics 34, 1186–1190 (2015)

    Article  CAS  Google Scholar 

  151. A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted Tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29, 8736–8742 (2013)

    Article  CAS  Google Scholar 

  152. S. Sabater, J.A. Mata, E. Peris, Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 4, 2038–2047 (2014)

    Article  CAS  Google Scholar 

  153. G. Ren, Y.-n. Li, Z. Guo, G. Xiao, Y. Zhu, L. Dai, L. Jiang, A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res. 8(11), 3461–3471 (2015)

    Article  CAS  Google Scholar 

  154. X. Zhou, T. Zhang, C.W. Abney, Z. Li, W. Lin, Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 6, 18475–18479 (2014)

    Article  CAS  Google Scholar 

  155. T. Szabó, T. Szabó-Plánka, D. Jónás, N.V. Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)

    Article  CAS  Google Scholar 

  156. M. Veerapandian, S. Neethirajan, Graphene oxide chemically decorated with Ag–Ru/chitosan nanoparticles: Fabrication, electrode processing and immunosensing properties. RSC Adv. 5, 75015–75024 (2015)

    Article  CAS  Google Scholar 

  157. D. Zhou, Q.-Y. Cheng, Y. Cui, T. Wang, X. Li, B.-H. Han, Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 66, 592–598 (2014)

    Article  CAS  Google Scholar 

  158. E.V. Basiuk, M. Martínez-Herrera, E. Álvarez-Zauco, L.V. Henao-Holguín, I. Puente-Lee, V.A. Basiuk, Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 43, 7413–7428 (2014)

    Article  CAS  Google Scholar 

  159. R. Kumar, K. Jayaramulu, T. Kumar Maji, C.N.R. Rao, Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Trans. 43, 7383–7386 (2014)

    Article  CAS  Google Scholar 

  160. V.A. Basiuk, E.V. Rybak-Akimova, E.V. Basiuk, Graphene oxide and nanodiamond: Same carboxylic groups, different complexation properties. RSC Adv. 7, 17442–17450 (2017)

    Article  CAS  Google Scholar 

  161. V.A. Basiuk, N. Alzate-Carvajal, L.V. Henao-Holguín, E.V. Rybak-Akimova, E.V. Basiuk, Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Appl. Surf. Sci. 371, 16–27 (2016)

    Article  CAS  Google Scholar 

  162. C.M. Parnell, B. Chhetri, A. Brandt, F. Watanabe, Z.A. Nima, T.K. Mudalige, A.S. Biris, A. Ghosh, Polydopamine-coated manganese complex/graphene nanocomposite for enhanced electrocatalytic activity towards oxygen reduction. Sci. Rep. 6, 31415 (2016)

    Article  CAS  Google Scholar 

  163. J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, S. Beck, Structure of polydopamine: A never-ending story? Langmuir 29(33), 10539–10548 (2013)

    Article  CAS  Google Scholar 

  164. G.I. Cardenas-Jiron, P. Leon-Plata, D. Cortes-Arriagada, J.M. Seminario, Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J. Phys. Chem. C 115, 16052–16062 (2011)

    Article  CAS  Google Scholar 

  165. Y. Wei-Guo, L. Dan, P. Xiao-Feng, D. Wei-Dong, Interfacial electronic structure at a metal–phthalocyanine/graphene interface: Copper–phthalocyanine versus iron–phthalocyanine. Chin. Phys. B 22(11), 117301 (2013)

    Article  CAS  Google Scholar 

  166. R. Devasenathipathy, V. Mani, S.-M. Chen, K. Manibalan, S.-T. Huang, Determination of 4-nitrophenol at iron phthalocyanine decorated graphene nanosheets film modified electrode. Int. J. Electrochem. Sci. 10, 1384–1392 (2015)

    Google Scholar 

  167. J. Ren, S. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, E. Kaxiras, Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys. 134, 194706 (2011)

    Article  CAS  Google Scholar 

  168. J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, W.J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6), 1900–1905 (2011)

    Article  CAS  Google Scholar 

  169. N. Kafle, A. Buldum, The interaction between fullerene-porphyrin dyad and graphene. AIMS Mater. Sci. 4(2), 505–514 (2017)

    Article  Google Scholar 

  170. F. Montiel, A. Miralrio, L.E. Sansores, S. Fomine, Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: A theoretical study. Mol. Simul. 43(9), 706–713 (2017)

    Article  CAS  Google Scholar 

  171. V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013)

    Article  CAS  Google Scholar 

  172. M.M. Bernal, E.M. Pérez, One-pot exfoliation of graphite and synthesis of nanographene/dimesitylporphyrin hybrids. Int. J. Mol. Sci. 16, 10704–10714 (2015)

    Article  CAS  Google Scholar 

  173. M. Jurow, V. Manichev, C. Pabon, B. Hageman, Y. Matolina, C.M. Drain, Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg. Chem. 52, 10576–10582 (2013)

    Article  CAS  Google Scholar 

  174. K. Karimne Zhad, A. Moghimi, Separation of Cr(III) from by functionalized graphene oxide with covalently linked porphyrin (GO–H2NP) adsorbed on surfactant coated C18. Orient. J. Chem. 30(1), 187–194 (2014)

    Article  CAS  Google Scholar 

  175. S. Zhang, S. Tang, J. Lei, H. Dong, H. Ju, Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J. Electroanal. Chem. 656, 285–288 (2011)

    Article  CAS  Google Scholar 

  176. T. Poursaberi, M. Hassanisadi, Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J. Porphyrins Phthalocyanines 16, 1140 (2012)

    Article  CAS  Google Scholar 

  177. H. Su, S. Wu, Z. Li, Q. Huo, J. Guan, Q. Kan, Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Appl. Organomet. Chem. 29, 462–467 (2015)

    Article  CAS  Google Scholar 

  178. Q. Zhao, C. Bai, W. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Catalytic epoxidation of olefins with graphene oxide supported copper (Salen) complex. Ind. Eng. Chem. Res. 53, 4232–4238 (2014)

    Article  CAS  Google Scholar 

  179. Z. Li, S. Wu, D. Zheng, J. Liu, H. Liu, H. Lu, Q. Huo, J. Guan, Q. Kan, Dioxomolybdenum(VI) complex covalently attached to amino-modified graphene oxide: Heterogeneous catalyst for the epoxidation of alkenes. Appl. Organomet. Chem. 28, 317–323 (2014)

    Article  CAS  Google Scholar 

  180. H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012)

    Article  CAS  Google Scholar 

  181. P.K. Khatri, S. Choudhary, R. Singh, S.L. Jain, O.P. Khatri, Dalton Trans. 43, 8054–8061 (2014)

    Article  CAS  Google Scholar 

  182. S. Ragu, S.-M. Chen, P. Ranganathan, S.-P. Rwei, Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci. 11, 9133–9144 (2016)

    Article  CAS  Google Scholar 

  183. J.-W. Liu, Y. Zhang, X.-W. Chen, J.-H. Wang, Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6, 10196–10204 (2014)

    Article  CAS  Google Scholar 

  184. Y. Guo, Y. Han, S. Shuang, C. Dong, Rational synthesis of graphene–metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem. 22, 13166–13173 (2012)

    Article  CAS  Google Scholar 

  185. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbibc, X. Sun, Facile synthesis of novel Ni(II)-based metal–organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 138, 429–433 (2013)

    Article  CAS  Google Scholar 

  186. M. Jahan, Z. Liu, K. Ping Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)

    Article  CAS  Google Scholar 

  187. Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–37 (2014)

    Article  CAS  Google Scholar 

  188. J.H. Lee, J. Jaworski, J. Hwa Jung, Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. Nanoscale 5, 8533–8540 (2013)

    Article  CAS  Google Scholar 

  189. G. Cheng, Z.-G. Wang, S. Denagamage, S.-Y. Zheng, Graphene-templated synthesis of magnetic metal organic framework nanocomposites for selective enrichment of biomolecules. ACS Appl. Mater. Interfaces 8(16), 10234–10242 (2016)

    Article  CAS  Google Scholar 

  190. D.D. Chronopoulos, A. Bakandritsos, P. Lazar, M. Pykal, K. Čeṕe, R. Zborǐl, M. Otyepka, High-yield alkylation and arylation of graphene via grignard reaction with fluorographene. Chem. Mater. 29, 926–930 (2017)

    Article  CAS  Google Scholar 

  191. Z.-C. Zhang, H.-Y. Jiang, Z.-W. Yua, Surface-enhanced Raman scattering, electron paramagnetic resonance, and electrochemical activity of copper(II) l-methionine complex/silver nanoparticles/graphene-coupled nanoaggregates. J. Coord. Chem. 68(1), 18–26 (2015)

    Article  CAS  Google Scholar 

  192. A.V. Akimov, C. Williams, A.B. Kolomeisky, Charge transfer and chemisorption of fullerene molecules on metal surfaces: Application to dynamics of nanocars. J. Phys. Chem. C 116, 13816–13826 (2012)

    Article  CAS  Google Scholar 

  193. R. Singhal, D.C. Agarwal, S. Mohapatra, Y.K. Mishra, D. Kabiraj, et al., Synthesis and characterizations of silver-fullerene C70 nanocomposite. Appl. Phys. Lett. 93, 103114 (2008)

    Article  CAS  Google Scholar 

  194. H. Kawabata, H. Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms. C (J. Carbon Res.) 3, 15, 8 pp (2017)

    Google Scholar 

  195. M. Robledo, N.F. Aguirre, S. Díaz-Tendero, F. Martín, M.I. Alcami, Bonding in exohedral metal–fullerene cationic complexes. RSC Adv. 4, 53010–53020 (2014)

    Article  CAS  Google Scholar 

  196. G. Bottari, G. de la Torre, T. Torres, Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)

    Article  CAS  Google Scholar 

  197. A.L. Balch, M.M. Olmstead, Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem. Rev. 98, 2123–2165 (1998)

    Article  CAS  Google Scholar 

  198. D.T. Thompson, Platinum group metal fullerenes. Some recent studies on systems containing C60. Platin. Met. Rev. 40(l), 23–25 (1996)

    CAS  Google Scholar 

  199. K.B. Ghiassi, M.M. Olmstead, A.L. Balch, Gadolinium-containing endohedral fullerenes: Structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans. 43, 7346–7358 (2014)

    Article  CAS  Google Scholar 

  200. E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nano-photonics, 1st edn. (CRC Press, Boca Raton, 2011), 328 pp

    Book  Google Scholar 

  201. S. Yang, C.-R. Wang, Endohedral Fullerenes: From Fundamentals to Applications (World Scientific Publishing Company, Singapore, 2014), 448 pp

    Book  Google Scholar 

  202. H. Shinohara, N. Tagmatarchis, Endohedral Metallofullerenes: Fullerenes with Metal Inside, 1st edn. (Wiley, Chichester/Hoboken, 2015), 296 pp

    Book  Google Scholar 

  203. M. Petrukhina, L.T. Scott, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, 1st edn. (Wiley, Hoboken, 2011), 440 pp

    Book  Google Scholar 

  204. D.M. Guldi, N. Martin, Fullerenes: From Synthesis to Optoelectronic Properties, Developments in fullerene science, 1st edn. (Springer, Dordrecht, 2003), 441 pp

    Google Scholar 

  205. P.J. Bracher, D.I. Schuster, Electron transfer in functionalized fullerenes, in Fullerenes: From Synthesis to Optoelectronic Properties, ed. by D. M. Guldi, N. Martín, (Kluwer Academic Publishers, Dordrecht, 2002), pp. 163–212

    Chapter  Google Scholar 

  206. S. Filippone, E.E. Maroto, A. Martín-Domenech, N. Martín, Metal catalysis in fullerene chemistry, in Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, ed. by A. J. L. Pombeiro, (Wiley, Hoboken, 2013)

    Chapter  Google Scholar 

  207. Y. Matsuo, E. Nakamura, Application of fullerenes to nanodevices, in Chemistry of Nanocarbons, ed. by T. Akasaka, F. Wudl, S. Nagase, (Wiley, Chichester, 2010)

    Chapter  Google Scholar 

  208. M.A. Lebedeva, T.W. Chamberlain, A.N. Khlobystov, Harnessing the synergistic and complementary properties of fullerene and transition metal compounds for nanomaterial applications. Chem. Rev. 115(20), 11301–11351 (2015)

    Article  CAS  Google Scholar 

  209. K. Kamarás, G. Klupp, Metallicity in fullerides. Dalton Trans. 43, 7366–7378 (2014)

    Article  CAS  Google Scholar 

  210. E.F. Sheka, B.S. Razbirin, A.N. Starukhin, D.K. Nelson, M.Yu. Degunov, R.N. Lyubovskaya, P.A. Troshin, N.V. Kamanina. Nonlinear photonics of fullerene solutions. https://arxiv.org/ftp/arxiv/papers/0901/0901.3728.pdf. Accessed on 23 Aug 2017

  211. B.K. Reddy, S.C. Gadekar, V.G. Anand, Non-covalent composites of antiaromatic isophlorin–fullerene. Chem. Commun. 51, 8276–8279 (2015)

    Article  CAS  Google Scholar 

  212. P. Bhyrappa, K. Karunanithi, Porphyrin−fullerene, C60, cocrystallates: Influence of C60 on the porphyrin ring conformation. Inorg. Chem. 49(18), 8389–8400 (2010)

    Article  CAS  Google Scholar 

  213. M. Jurow, A. Varotto, V. Manichev, et al., Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO. RSC Adv. 3, 21360–21364 (2013)

    Article  CAS  Google Scholar 

  214. D.V. Konarev, R.N. Lyubovskaya, New approaches to the synthesis of transition-metal complexes of fullerenes C60 and C70. Russ. Chem. Rev. 85(11), 1215–1228 (2016)

    Article  CAS  Google Scholar 

  215. D.V. Konarev, S.S. Khasanov, R.N. Lyubovskaya, Transition from free rotation of C70 molecules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: {(FeIIITPP)2O}·C70. J. Porphyrins Phthalocyanines 14, 293 (2010)

    Article  CAS  Google Scholar 

  216. A.Y. Vul, V.I. Sokolov, Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Nanotechnol Russ 4(7–8), 397–414 (2009)

    Article  Google Scholar 

  217. D. Soto, R. Salcedo, Coordination modes and different hapticities for fullerene organometallic complexes. Molecules 17, 7151–7168 (2012)

    Article  CAS  Google Scholar 

  218. S.-K. Goh, D.S. Marynick, Ability of fullerenes to act as η6 ligands in transition metal complexes. A comparative PM3(tm)–density functional theory study. J. Comput. Chem. 22(16), 1881–1886 (2001)

    Article  CAS  Google Scholar 

  219. F. Banim, C.J. Cardin, D.J. Cardin, M. Pistocchi, A. Todd, The synthesis of dicobalt and dinickel complexes of trimethylsilylethynyl-1, 2-dihydrofullerene; characterisation by n.m.r. and structure of the first acyclic metal fullerene derivative: Molecular structure of [η2-{2-H-1-(Me3SiC≡C)-C60}Ni2(η-C5H5)2]. J. Phys. Chem. Solids 58(11), 1919–1923 (1997)

    Article  CAS  Google Scholar 

  220. A. Bianco, M. Maggini, S. Mondini, A. Polese, G. Scorrano, C. Toniolo, D.M. Guldi, Synthesis and characterization of a peptide-linked C60 Dyad, in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, ed. by K. M. Kadish, R. S. Ruoff, vol. 6, (The Electrochemical Society Inc., Pennington, 1998), pp. 1145–1151

    Google Scholar 

  221. T.V. Magdesieva, V.V. Bashilov, D.N. Kravchuk, V.I. Sokolov, K.P. Butin, Electrochemical metallation and arylation of C60. Russ. J. Electrochem. 35(9), 992–999 (1999)

    CAS  Google Scholar 

  222. W. Zhao, J. Tang, A.U. Falster, W.B. Simmons, R.L. Sweany, Infrared transmission study of lanthanide fullerides SmxC60 prepared by metal vapor synthesis. Proc. Electrochem. Soc. 96–10 (Recent Advances in the Chemistry and Physics of Fullerenes, Vol. 3), 1115–1126 (1996); J. Alloys Compd. 249(1–2), 241–245 (1997)

    Article  CAS  Google Scholar 

  223. Y. Matsuo, Y. Kuninobu, A. Muramatsu, M. Sawamura, E. Nakamura, Synthesis of metal fullerene complexes by the use of fullerene halides. Organometallics 27(14), 3403–3409 (2008)

    Article  CAS  Google Scholar 

  224. H. Zheng, X. Zhao, S. Sakaki, [2+2]-type reaction of metal–metal σ-bond with fullerene forming an η1-C60 metal complex: Mechanistic details of formation reaction and prediction of a new η1-C60 metal complex. Inorg. Chem. 56(11), 6746–6754 (2017)

    Article  CAS  Google Scholar 

  225. N. Kishi, M. Akita, M. Kamiya, et al., Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135(35), 12976–12979 (2013)

    Article  CAS  Google Scholar 

  226. N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as Buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)

    Article  CAS  Google Scholar 

  227. Y. Eda, K. Itoh, Y.N. Ito, M. Fujitsuka, T. Majima, T. Kawato, Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion. J. Supramol. Chem. 22(9), 517–523 (2010)

    Article  CAS  Google Scholar 

  228. F. Langa, J.-F. Nierengarten (eds.), Fullerenes: Principles and Applications (The Royal Society of Chemistry, Cambridge, 2007). http://pubs.rsc.org/en/content/ebook/9780854045518

    Google Scholar 

  229. B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)

    Article  CAS  Google Scholar 

  230. G. Bottari, J.A. Suanzes, O. Trukhina, T. Torres, Phthalocyanine−carbon nanostructure materials assembled through supramolecular interactions. J. Phys. Chem. Lett. 2, 905–913 (2011)

    Article  CAS  Google Scholar 

  231. G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473–487 (2009)

    Article  CAS  Google Scholar 

  232. H. Yamada, H. Imahori, Y. Nishimura, Y. Nishimura, I. Yamazaki, T.K. Ahn, S.K. Kim, D. Kim, S. Fukuzumi, Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin−fullerene dyads on ITO and gold surfaces. J. Am. Chem. Soc. 125(30), 9129–9139 (2003)

    Article  CAS  Google Scholar 

  233. H. Imahori, M. Kimura, K. Hosomizu, T. Sato, T.K. Ahn, S.K. Kim, D. Kim, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads and porphyrin–fullerene dyads for molecular photovoltaic devices. Chem. Eur. J. 10, 5111–5122 (2004)

    Article  CAS  Google Scholar 

  234. N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, Ultrafast photodynamics of exciplex formation and photoinduced electron transfer in porphyrin−fullerene dyads linked at close proximity. J. Phys. Chem. A 107, 8834–8844 (2003)

    Article  CAS  Google Scholar 

  235. N. Armaroli, G. Accorsi, F.Y. Song, A. Palkar, L. Echegoyen, D. Bonifazi, F. Diederich, Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem 6, 732–743 (2005)

    Article  CAS  Google Scholar 

  236. P.D.W. Boyd, C.A. Reed, Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005)

    Article  CAS  Google Scholar 

  237. G. Bottari, G. de la Torre, T. Torres, Phthalocyanine–nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)

    Article  CAS  Google Scholar 

  238. Y.-J. Cho, T.K. Ahn, H. Song, et al., ZnP-C60 dyad (Os) structure on ITO. J. Am. Chem. Soc. 127, 2380–2381 (2005)

    Article  CAS  Google Scholar 

  239. R. Koeppe, N.S. Sariciftci, P.A. Troshin, R.N. Lyubovskaya, Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. Appl. Phys. Lett. 87, 244102 (2005)

    Article  CAS  Google Scholar 

  240. M.G. Walter, A.B. Rudine, C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 14, 759–792 (2010)

    Article  CAS  Google Scholar 

  241. T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)

    Article  CAS  Google Scholar 

  242. T. Hasobe, H. Imahori, P.V. Kamat, S. Fukuzumi, Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J. Am. Chem. Soc. 125, 14962–14963 (2003)

    Article  CAS  Google Scholar 

  243. H. Imahori, S. Fukuzumi, Porphyrin- and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 14(6), 525–536 (2004)

    Article  CAS  Google Scholar 

  244. E.S. Zyablikova, N.A. Bragina, A.F. Mironov, Covalent-bound conjugates of fullerene C60 and metal complexes of porphyrins with long-chain substituents. Mendeleev Commun. 22, 257–259 (2012)

    Article  CAS  Google Scholar 

  245. S.J. Dammer, P.V. Solntsev, J.R. Sabin, V.N. Nemykin, Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts. Inorg. Chem. 52, 9496–9510 (2013)

    Article  CAS  Google Scholar 

  246. D.M. Wood, W. Meng, T.K. Ronson, A.R. Stefankiewicz, J.K.M. Sanders, J.R. Nitschke, Guest-induced transformation of a porphyrin-edged FeII4L6 capsule into a CuIFeII2L4 fullerene receptor. Angew. Chem. 54(13), 3988–3992 (2015)

    Article  CAS  Google Scholar 

  247. M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström, H. Imahori, A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. 56, 3329–3333 (2017)

    Article  CAS  Google Scholar 

  248. W. Cao, Y. Zhang, H. Wang, K. Wang, J. Jiang, Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(III) double- deckers with mixed tetrapyrrole ligands. RSC Adv. 5, 17732–17737 (2015)

    Article  CAS  Google Scholar 

  249. L. Moreira, J. Calbo, B.M. Illescas, et al., Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew. Chem. 54(4), 1255–1260 (2015)

    Article  CAS  Google Scholar 

  250. H. Wang, K. Qian, D. Qi, W. Cao, K. Wang, S. Gao, J. Jiang, Co-crystallized fullerene and a mixed (phthalocyaninato)(porphyrinato) dysprosium double-decker SMM. Chem. Sci. 5, 3214–3220 (2014)

    Article  CAS  Google Scholar 

  251. H.M. Rhoda, M.P. Kayser, Y. Wang, A.Y. Nazarenko, R.V. Belosludov, P. Kiprof, D.A. Blank, V.N. Nemykin, Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: Experimental and theoretical studies. Inorg. Chem. 55, 9549–9563 (2016)

    Article  CAS  Google Scholar 

  252. Y. Matsuo, B.K. Park, Y. Mitani, Y.-W. Zhong, M. Maruyama, E. Nakamura, Synthesis of ruthenium pentamethyl[60]fullerene complexes bearing monodentate diphenylphosphino-methane, −ferrocene, and -butane Ligands. Bull. Kor. Chem. Soc. 31(3), 697–699 (2010)

    Article  CAS  Google Scholar 

  253. Y. Matsuo, Y. Kuninobu, S. Ito, M. Sawamura, E. Nakamura, Friedel–Crafts functionalization of the cyclopentadienyl ligand in buckymetallocenes. Dalton Trans. 43, 7407–7412 (2014)

    Article  CAS  Google Scholar 

  254. A.L. Svitova, Y. Krupskaya, N. Samoylova, R. Kraus, J. Geck, L. Dunsch, A.A. Popov, Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3–xN@C80 (x = 1–3). Dalton Trans. 43, 7387–7390 (2014)

    Article  CAS  Google Scholar 

  255. S. Stevenson, K.A. Rottinger, J.S. Field, Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans. 43, 7435–7441 (2014)

    Article  CAS  Google Scholar 

  256. A. Botos, A.N. Khlobystov, B. Botka, et al., Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys. Status Solidi B 247(11–12), 2743–2745 (2010)

    Article  CAS  Google Scholar 

  257. M. Koshino, Multiple reaction pathways of metallofullerenes investigated by transmission electron microscopy. Dalton Trans. 43, 7359–7365 (2014)

    Article  CAS  Google Scholar 

  258. A.S. Sinitsa, I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, S.T. Skowronf, E. Bichoutskaia, Formation of nickel–carbon heterofullerenes under electron irradiation. Dalton Trans. 43, 7499–7513 (2014)

    Article  CAS  Google Scholar 

  259. B. Molina, L. Pérez-Manríquez, R. Salcedo, On the π coordination of organometallic fullerene complexes. Molecules 16, 4652–4659 (2011)

    Article  CAS  Google Scholar 

  260. B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)

    Article  CAS  Google Scholar 

  261. T. Oku, A. Suzuki, Y. Yamasaki, Theoretical study of gallium phthalocyanine dimer-fullerene complex for photovoltaic device. J. Mod. Phys. 2(9), ID:7137, 4 pp (2011)

    Google Scholar 

  262. V. Strauss, A.A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)

    Article  CAS  Google Scholar 

  263. A.F. Mironov, Synthesis, properties, and potential applications of porphyrin-fullerenes. Macroheterocycles 4(3), 186–208 (2011)

    Article  CAS  Google Scholar 

  264. A. Loboda, Quantum-chemical studies on Porphyrins, Fullerenes and Carbon Nanostructures (Springer, Berlin, 2013), 144 pp

    Book  Google Scholar 

  265. C. García-Simón, M. Costas, X. Ribas, Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev. 45, 40–62 (2016)

    Article  Google Scholar 

  266. S. Sarkar, S.M. Rezayat, A. Buchachenko, S. Sarkar, S.M. Rezayat, A.L. Buchachenko, D.A. Kuznetsov, M.A. Orlova, M.A. Yurovskaya, European Union Patents № 07009881.9 and № 07009882.7, 2007, Munich, Germany

    Google Scholar 

  267. I. Rašović, Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2017)

    Article  CAS  Google Scholar 

  268. S. Prylutska, S. Politenkova, K. Afanasieva, et al., A nanocomplex of C60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein J. Nanotechnol. 8, 1494–1501 (2017)

    Article  CAS  Google Scholar 

  269. N. Mar, L.E. Sansores, E. Ramos, R. Salcedo, Iron complexes of nanodiamond: Theoretical approach. Comput. Theor. Chem. 1035(1–5), 1 (2014)

    Article  CAS  Google Scholar 

  270. K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, and I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks. arXiv:1501.07632 [physics.optics] (2015). https://arxiv.org/abs/1501.07632

  271. K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes. Nanoscale 7, 4869–4874 (2015)

    Article  CAS  Google Scholar 

  272. M.A. Ilyushin, A.S. Kozlov, A.V. Smirnov, A.S. Tver’yanovich, Y.S. Tver’yanovich, G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, The effect of carbon nanoparticles on the thermal and photolytic properties of the (5-nitrotetrazolato-N2) pentaammin-cobalt(III) perchlorate complex. Glas. Phys. Chem. 43(1), 111–113 (2017)

    Article  CAS  Google Scholar 

  273. J.H.E. Phua, W.K. Leong, Nanodiamonds decorated with organometallic clusters. http://www.nus.edu.sg/nurop/2010/Proceedings/FoS/Chemistry/Phua%20Jia%20Han%20Eunice_U062023A.pdf

  274. G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 48, 11528–11530 (2012)

    Article  CAS  Google Scholar 

  275. X. Zhao, S. Zhang, C. Bai, B. Li, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma, S. Li, Nano-diamond particles functionalized with single/double-arm amide–thiourea ligands for adsorption of metal ions. J. Colloid Interface Sci. 469, 109–119 (2016)

    Article  CAS  Google Scholar 

  276. L.S. Sundar, M.K. Singh, E. Venkata Ramana, B. Singh, J. Gracio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039, 14 pp (2014)

    Google Scholar 

  277. C.-L. Lin, C.-H. Lin, H.-C. Chang, M.-C. Su, Protein attachment on nanodiamonds. J. Phys. Chem. A 119(28), 7704–7711 (2015)

    Article  CAS  Google Scholar 

  278. H.B. Na, T. Hyeon, Nanostructured T1 MRI contrast agents. J. Mater. Chem. 19, 6267–6273 (2009)

    Article  CAS  Google Scholar 

  279. L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2009)

    Article  CAS  Google Scholar 

  280. Q. Le Trequesser, H. Seznec, M.-H. Delville. Functionalized nanomaterials: Their use as contrast agents in bioimaging: Mono- and multimodal approaches. Nanotechnol Rev, 2(2), 125–169 (2013). HAL Id: hal-00814288 https://hal.archives-ouvertes.fr/hal-00814288

  281. Y. Zhu, Y. Zhang, G. Shi, et al., Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12(2), 11 pp (2015)

    Google Scholar 

  282. Y.Y. Hui, C.-L. Cheng, H.-C. Chang, Nanodiamonds for optical bioimaging. J. Phys. D. Appl. Phys. 43, 374021 (2010)

    Article  CAS  Google Scholar 

  283. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol 7, 11–23 (2012)

    Article  CAS  Google Scholar 

  284. A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134, 1751–1764 (2009)

    Article  CAS  Google Scholar 

  285. Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009)

    Article  CAS  Google Scholar 

  286. L. Echegoyen, A. Ortiz, M.N. Chaur, A.J. Palkar, Carbon nano onions, in Chemistry of Nanocarbons, ed. by T. Akasaka, S. Nagase, F. Wudl, (Wiley, Chichester, 2010)

    Chapter  Google Scholar 

  287. J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)

    Article  CAS  Google Scholar 

  288. J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorelli, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nanoonions with pyrene–BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)

    Article  CAS  Google Scholar 

  289. A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chem. Mater. 20, 1685–1687 (2008)

    Article  CAS  Google Scholar 

  290. V. Spampinato, G. Ceccone, Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 10, 019006 (2015)

    Article  CAS  Google Scholar 

  291. C.T. Cioffi, A. Palkar, F. Melin, A. Kumbhar, L. Echegoyen, M. Melle-Franco, F. Zerbetto, G.M.A. Rahman, C. Ehli, V. Sgobba, D.M. Guldi, M. Prato, Chem. Eur. J. 15, 4419–4427 (2009)

    Article  CAS  Google Scholar 

  292. M.B. Seymour, C. Su, Y. Gao, Y. Lu, Y. Li, Characterization of carbon nano-onions for heavy metal ion remediation. J. Nanopart. Res. 14, 1087 (2012)

    Article  CAS  Google Scholar 

  293. Y. Li, M. Seymour, Fullerenes and carbon nano-onions for environmental application, in Nanotechnology for Water Treatment and Purification, Part of the lecture notes in nanoscale science and technology book series (LNNST), vol. 22, (Springer, Cham, 2014), pp. 145–158

    Google Scholar 

  294. M. Klose, K. Pinkert, M. Zier, M. Uhlemann, et al., Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon 79, 302–309 (2014)

    Article  CAS  Google Scholar 

  295. C.P. Hauser, N. Jagielski, J. Heller, D. Hinderberger, H.W. Spiess, I. Lieberwirth, C.K. Weiss, K. Landfester, Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion. Langmuir 27, 12859–12868 (2011)

    Article  CAS  Google Scholar 

  296. A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, J.M. Razal, R. Lahoz, M. Laguna, G.F. de la Fuente, E. Muñoz, Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)

    Article  CAS  Google Scholar 

  297. K. Kongpatpanich, S. Horike, Y.-i. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem. Eur. J. 21, 13278–13283 (2015)

    Article  CAS  Google Scholar 

  298. A. Peña, A. Guerrero, J. Puerta, J.L. Brito, T.K. Heckel, Characterisation of carbon nanotube foam for improved gas storage capability, in Proceedings of the SEM Annual Conference June 7–10, 2010 Indianapolis, 2010 Society for Experimental Mechanics Inc

    Google Scholar 

  299. S.R. Stoyanov, P. Král, Multifunctional metal-doped carbon nanocapsules. J. Chem. Phys. 129, 234702 (2008)

    Article  CAS  Google Scholar 

  300. A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)

    Article  CAS  Google Scholar 

  301. T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, Article ID 613746, 6 pp (2012)

    Google Scholar 

  302. D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)

    Article  CAS  Google Scholar 

  303. B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)

    Article  CAS  Google Scholar 

  304. L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)

    Article  CAS  Google Scholar 

  305. D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, O.Y. Podyacheva, F.S. Hage, Q.M. Ramasse, U. Bangert, L.G. Bulusheva, Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)

    Article  CAS  Google Scholar 

  306. T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Modification of carbon nanofibres for immobilisation of metal complexes. A case study with rhodium-anthranilic acid. Chem. Eur. J. 8(13), 2868–2878 (2002)

    Article  CAS  Google Scholar 

  307. B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)

    Article  CAS  Google Scholar 

  308. C. Wang, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)

    Article  CAS  Google Scholar 

  309. W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)

    Article  CAS  Google Scholar 

  310. J. Shuia, C. Chen, L. Grabstanowicz, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)

    Article  CAS  Google Scholar 

  311. J. Zhang, S.-H. Yu, Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)

    Article  CAS  Google Scholar 

  312. A. Sciortino, A. Madonia, M. Gazzetto, et al., The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale 9, 11902–11911 (2017)

    Article  CAS  Google Scholar 

  313. C. Liu, B. Tang, S. Zhang, et al., Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence. J. Phys. Chem. C 122, 3662–3668 (2018)

    Article  CAS  Google Scholar 

  314. N. Dhenadhayalan, K.-C. Lin, Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci. Rep. 5, 10012 (2015)

    Article  CAS  Google Scholar 

  315. B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal−organic framework UMCM-1. J. Phys. Chem. C 114(14), 6464–6471 (2010)

    Article  CAS  Google Scholar 

  316. J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)

    Article  CAS  Google Scholar 

  317. S. Kim, J. Kyo Seo, J. Hong Park, et al., White-light emission of blue-luminescent graphene quantum dots by europium (III)complex incorporation. Carbon 124, 479–485 (2017)

    Article  CAS  Google Scholar 

  318. L. Wang, S. Tricard, P. Yue, et al., Polypyrrole and graphene quantum dots@Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens. Bioelectron. 77, 1112–1118 (2016)

    Article  CAS  Google Scholar 

  319. G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)

    Article  CAS  Google Scholar 

  320. Z. Tian, X. Yao, K. Ma, et al., Metal−organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2, 1249–1258 (2017)

    Article  CAS  Google Scholar 

  321. B. Zheng, C. Wang, X. Xin, et al., Electron transfer from graphene quantum dots to the copper complex enhances its nuclease activity. J. Phys. Chem. C 118(14), 7637–7642 (2014)

    Article  CAS  Google Scholar 

  322. J. Marwan, T. Addou, D. Belanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17, 2395–2403 (2005)

    Article  CAS  Google Scholar 

  323. L. Fotouhi, M. Naseri, Recent electroanalytical studies of metal-organic frameworks: A mini-review. Crit. Rev. Anal. Chem. 46(4), 323–331 (2015)

    Article  CAS  Google Scholar 

  324. O. Fatibello-Filho, E.R. Dockal, L.H. Marcolino-Junior, M.F.S. Teixeira, Electrochemical modified electrodes based on metal-salen complexes. Anal. Lett. 40, 1825–1852 (2007)

    Article  CAS  Google Scholar 

  325. G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)

    Article  CAS  Google Scholar 

  326. W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)

    Article  CAS  Google Scholar 

  327. S. Zhao, Y. Wang, J. Dong et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 1, Art. No. 16184 (2016)

    Google Scholar 

  328. A. Ciszewski, G. Milczarek, Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J. Electroanal. Chem. 426, 125–130 (1997)

    Article  CAS  Google Scholar 

  329. C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbonelectrodes. Appl. Catal. B Environ. 188, 169–176 (2016)

    Article  CAS  Google Scholar 

  330. Q. He, G. Wu, K. Liu, S. Khene, Q. Li, T. Mugadza, E. Deunf, T. Nyokong, S.W. Chen, Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem 1, 1508–1515 (2014)

    Article  CAS  Google Scholar 

  331. S. Brüller, H.-W. Liang, U.I. Kramm, J.W. Krumpfer, X. Feng, K. Müllen, Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 3, 23799–23808 (2015)

    Article  CAS  Google Scholar 

  332. K. Calfumán, M.J. Aguirre, D. Villagra, C. Yañez, C. Arévalo, B. Matsuhiro, L. Mendoza, M. Isaacs, Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: Characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions. J. Solid State Electrochem. 14, 1065–1072 (2010)

    Article  CAS  Google Scholar 

  333. T. Ikai, T. Yonekura, T. Ohsaka, F. Kitamura, Oxygen reduction at the rare-earth phthalocyanine-modified glassy carbon electrode in aqueous media. http://www.electrochem.org/dl/ma/206/pdfs/2310.pdf, Accessed on 13 Sept 2017

  334. S. Realista, P. Ramgi, B. de P Cardoso, A.I. Melato, A.S. Viana, M.J. Calhorda, P.N. Martinho, Heterodinuclear Ni(II) and Cu(II) Schiff base complexes and their activity in oxygen reduction. Dalton Trans. 45, 14725–14733 (2016)

    Article  CAS  Google Scholar 

  335. S. Praveen Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, V. Narayanan, Synthesis, characterization of nickel Schiff base complex and its electrocatalytic sensing nature for Hg+2. Third National Conference on Advances in Chemistry (NCAC–2015). Int. J. Innov. Res. Sci. Eng. Technol, 4(Special Issue 1) (2015)

    Google Scholar 

  336. O.V. Levin, M.P. Karushev, A.M. Timonov, E.V. Alekseeva, S. Zhang, V.V. Malev, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim. Acta 109, 153–161 (2013)

    Article  CAS  Google Scholar 

  337. L. Abdullah Alshahrani, X. Li, H. Luo, The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors 14, 22274–22284 (2014)

    Article  CAS  Google Scholar 

  338. C.A. Caro, L. Lillo, F.J. Valenzuela, G. Cabello, E. Lang, D. Vallejos, C. Castillo, Oxidation of melatonin on a glassy carbon electrode modified with metallic glucosamines. Synthesis and characterization. J. Solid State Electrochem. 20, 993–1000 (2016)

    Article  CAS  Google Scholar 

  339. P. Kumar Sonkar, V. Ganesan, S. Abraham John, D. Kumar Yadava, R. Gupta, Non-enzymatic electrochemical sensing platform based on metal complex immobilized carbon nanotubes for glucose determination. RSC Adv. 6, 107094–107103 (2016)

    Article  CAS  Google Scholar 

  340. Y. Wang, Y. Wu, J. Xie, X. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B 177, 1161–1166 (2013)

    Article  CAS  Google Scholar 

  341. X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, Highly dispersible and stable copper terephthalate metal−organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6, 11573–11580 (2014)

    Article  CAS  Google Scholar 

  342. Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V.M. Fernandez, E. Lorenzo, H.D. Abruna, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Anal. Chem. 68, 3688–3696 (1998)

    Article  Google Scholar 

  343. B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catechol amines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39(1), 124–132 (2013)

    Article  CAS  Google Scholar 

  344. A. Yeşildağ, D. Ekinci, Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces. Electrochim. Acta 55, 7000–7009 (2010)

    Article  CAS  Google Scholar 

  345. D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Metal−polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. (Published as part of the Accounts of Chemical Research special issue “Earth Abundant Metals in Homogeneous Catalysis”). Acc. Chem. Res. 48(7), 2027–2036 (2015)

    Article  CAS  Google Scholar 

  346. V. Ramírez-Delgado, G. Osorio-Monreal, L.F. Hernández-Ayala, Y. Reyes-Vidal, J.C. García-Ramos, L. Ruiz-Azuara, L. Ortiz-Frade, Electrochemical behavior of Ni(II) complexes with N2S2 and N6 ligands as potential catalysts in hydrogen evolution reaction. J. Mex. Chem. Soc. 59(4), 294–301 (2015)

    Google Scholar 

  347. O.R. Luca, J.D. Blakemore, S.J. Konezny, et al., Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen. Inorg Chem 51, 8704–8709 (2012)

    Article  CAS  Google Scholar 

  348. J.C. Swarts, D. Laws, W.E. Geiger, An organometallic electrode based on covalent attachment of the cobaltocenium group to carbon. Organometallics 24, 341–343 (2005)

    Article  CAS  Google Scholar 

  349. A. Ayadi, A. El Alamy, O. Alévêque, M. Allain, N. Zouari, M. Bouachrine, A. El-Ghayoury, Tetrathiafulvalene-based azine ligands for anion and metal cation coordination. Beilstein J. Org. Chem. 11, 1379–1391 (2015)

    Article  CAS  Google Scholar 

  350. O. Buriez, L.M. Moretto, P. Ugo, Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochim. Acta 52, 958–964 (2006)

    Article  CAS  Google Scholar 

  351. L. Luzuriaga, M.F. Cerdá, Analysis of the interaction between [Ru(phenanthroline)3]2+ and bovine serum albumin. Adv Biol. Chem. 2, 262–267 (2012)

    Article  CAS  Google Scholar 

  352. Z. Zheng, R. Wu, Y. Xiao, H.E.M. Christensen, F. Zhao, J. Zhang, Electrochemical catalysis of inorganic complex K4[Fe(CN)6] by Shewanella oneidensis MR-1, in Abstract from Forth EuCheMS Inorganic Chemistry Conference (EICC-4), Copenhagen, 2017

    Google Scholar 

  353. K.S. Shaju, T.K. Joby, P.R. Vinod, K. Nimmy, Spectral and cyclic voltammetric studies on Cu(II)-Schiff base complex derived from anthracene-9(10H)-one. IOSR J. Appl. Chem. (IOSR-JAC) 7(10), 64–68 (2014)

    Article  Google Scholar 

  354. M. Landman, J. Conradie, P.H. van Rooyen, Computational chemistry insights in the REDOX Behaviour of Cr and W Fischer carbene complexes, in 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2015). IOP Publishing Journal of Physics: Conference Series, 633, 012068, 2015

    Google Scholar 

  355. H. Wu, J. Yuan, B. Qi, J. Kong, F. Kou, F. Jia, X. Fan, Y. Wang, A seven-coordinate manganese(II) complex formed with the tripodal tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine. Z. Naturforsch. 65b, 1097–1100 (2010)

    Article  Google Scholar 

  356. N. Ramalakshmi, S. Muthukumar, B. Marichamy, Electrochemical study of Mn2+ Redox system on 4-hydroxybenzylidene-Carbamide-CTAB modified glassy carbon electrode. Res. J. Chem. Sci. 3(8), 29–37 (2013)

    CAS  Google Scholar 

  357. E.S. Wiedner, J.Y. Yang, W.G. Dougherty, W.S. Kassel, R.M. Bullock, M.R. DuBois, D.L. DuBois, Comparison of cobalt and nickel complexes with sterically demanding cyclic diphosphine ligands: Electrocatalytic H2 production by [Co(PtBu2NPh2)(CH3CN)3](BF4)2. Organometallics 29, 5390–5401 (2010)

    Article  CAS  Google Scholar 

  358. K. Jong Lee, Y. Il, S. Sung Lee, B. Yong Lee, Iron(II) tris(3-bromo-1,10-phenanthroline) complex: Synthesis, crystal structure and electropolymerization. Bull. Kor. Chem. Soc. 23(3), 399–403 (2002)

    Article  Google Scholar 

  359. K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Half-sandwich para-cymene ruthenium(II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties. Polyhedron 27, 157–166 (2008)

    Article  CAS  Google Scholar 

  360. A. Ciszewski, I. Stepniak, Non-enzymatic sensing of glucose using glassy carbon electrode modified with organometallic complex of nickel. Int. J. Electrochem. Sci. 10, 8298–8307 (2015)

    CAS  Google Scholar 

  361. Md Sohel. Rana, M. Arifur Rahman, A.M. Shafiqul Alam, A CV study of copper complexation with guanine using glassy carbon electrode in aqueous medium. ISRN Electrochem, 2014, Article ID 308382, 7 pp (2014)

    Google Scholar 

  362. Z.-N. Gao, J.-F. Ma, W.-Y. Liu, Electrocatalytic oxidation of sulfite by acetylferrocene at glassy carbon electrode. Appl. Organomet. Chem. 19, 1149–1154 (2005)

    Article  CAS  Google Scholar 

  363. Q. Sun, L. Cai, S. Wang, R. Widmer, H. Ju, J. Zhu, L. Li, Y. He, P. Ruffieux, R. Fasel, W. Xu, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)

    Article  CAS  Google Scholar 

  364. R.J. Lagow, J.J. Kampa, H.-C. Wei, S.L. Battle, J.W. Genge, D.A. Laude, C.J. Harper, R. Bau, R.C. Stevens, J.F. Haw, E. Munson, Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267, 362–367 (1995)

    Article  CAS  Google Scholar 

  365. W.A. Chalifoux, R.R. Tykwinski, Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967–971 (2010)

    Article  CAS  Google Scholar 

  366. S. Eisler, A.D. Slepkov, E. Elliott, T. Luu, R. McDonald, F.A. Hegmann, R.R. Tykwinski, Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005)

    Article  CAS  Google Scholar 

  367. Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: Readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)

    Article  CAS  Google Scholar 

  368. U. Schubert, Syntheses of transition metal–carbyne complexes, in The Metal-Carbon Bond, ed. by F. R. Hartley, S. Patai, vol. 1, (Wiley, Chichester, 1983)

    Google Scholar 

  369. R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)

    Article  CAS  Google Scholar 

  370. Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, Diruthenium–polyyn-diyl–diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136(34), 12174–12183 (2014)

    Article  CAS  Google Scholar 

  371. A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*−(C≡C)6−Fp* [Fp*= Fe(η5-C5Me5)(CO)2], the longest structurally characterized polyynediyl complex. Organometallics 18(16), 3241–3244 (1999)

    Article  CAS  Google Scholar 

  372. B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. 21, 17769–17778 (2015)

    Article  CAS  Google Scholar 

  373. R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6-C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) end groups. J. Am. Chem. Soc. 122, 810–822 (2000)

    Article  CAS  Google Scholar 

  374. A. Kucherik, S. Kutrovskaya, A. Osipov, I. Skryabin, S. Arakelian, Metal-carbon nanoclusters for SERS, in IOP Conf. Series: Journal of Physics: Conf. Series, vol. 784, 012031 International Symposium Physics, Engineering and Technologies for Bio-Medicine, 2017

    Google Scholar 

  375. S. Arakelian, S. Kutrovskaya, A. Kucherik, A. Osipov, A. Povolotckaia, A. Povolotskiy, A. Manshina, Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016)

    Article  CAS  Google Scholar 

  376. B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. Eur. J. 21, 17769–17778 (2015)

    Article  CAS  Google Scholar 

  377. Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, T. Ren, Diruthenium−polyyn-diyl−diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136, 12174–12183 (2014)

    Article  CAS  Google Scholar 

  378. A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*-(CtC)6-Fp* [(Fp*)Fe(η5-C5Me5)(CO)5], the longest structurally characterized polyynediyl Complex. Organometallics 18, 3241–3244 (1999)

    Article  CAS  Google Scholar 

  379. M.I. Bruce, N.N. Zaitseva, B.K. Nicholson, B.W. Skelton, A.H. White, Syntheses and molecular structures of some compounds containing many-atom chains end-capped by tricobalt carbonyl clusters. J. Organomet. Chem. 693, 2887–2897 (2008)

    Article  CAS  Google Scholar 

  380. M.E. Vol’pin, Y.N. Novikov, Coordination chemistry of graphite. Pure Appl. Chem. 60(8), 1133–1140 (1988)

    Article  Google Scholar 

  381. Y. Wang, Y. Wu, H. Ge, et al., Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin. Talanta 122, 91–96 (2014)

    Article  CAS  Google Scholar 

  382. Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, J. Hu, Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir 31(26), 7410–7417 (2015)

    Article  CAS  Google Scholar 

  383. Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–47 (2014)

    Article  CAS  Google Scholar 

  384. Z. Zhang, H. Wang, X. Chen, et al., Chromium-based metal–organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption. Adsorption 21(1–2), 77–86 (2015)

    Article  CAS  Google Scholar 

  385. S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115, 32–39 (2013)

    Article  CAS  Google Scholar 

  386. C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)

    Article  CAS  Google Scholar 

  387. M. Ko, A. Aykanat, M.K. Smith, K.A. Mirica, Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors 17, 2192 (2017)., 17 pp

    Article  CAS  Google Scholar 

  388. T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 17(1), 5–16 (2011)

    Article  CAS  Google Scholar 

  389. C. Petit, T.J. Bandosz, MOF–graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia. J. Mater. Chem. 19, 6521–6528 (2009)

    Article  CAS  Google Scholar 

  390. M. Chen, Y. Ding, Y. Liu, et al., Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites. Pet. Sci. Technol. 36(2), 141–147 (2018)

    Article  CAS  Google Scholar 

  391. I. Ahmed, N. Abedin Khan, S. Hwa Jhung, Graphite oxide/metal–organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels. Inorg. Chem. 52(24), 14155–14161 (2013)

    Article  CAS  Google Scholar 

  392. N. Lin, S. Stepanow, F. Vidal, et al., Surface-assisted coordination chemistry and self-assembly. Dalton Trans., 2794–2800 (2006)

    Google Scholar 

  393. T. Szabó, T. Szabó-Plánka, D. Jónás, N. Veronika Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)

    Article  CAS  Google Scholar 

  394. D. Kunzel, T. Markert, A. Groß, D.M. Benoit, Bis(terpyridine)-based surface template structures on graphite: A force field and DFT study. Phys. Chem. Chem. Phys. 11, 8867–8878 (2009)

    Article  CAS  Google Scholar 

  395. J. Otsuki, T. Tokimoto, Y. Noda, et al., Ordered arrays of organometallic iridium complexes with long alkyl chains on graphite. Chemistry 13(8), 2311–2319 (2007)

    Article  CAS  Google Scholar 

  396. J. Otsuki, S. Kawaguchi, T. Yamakawa, M. Asakawa, K. Miyake, Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006)

    Article  CAS  Google Scholar 

  397. Y. Li, L. Cheng, C. Liu et al., On-surface observation of the formation of organometallic complex in a supramolecular network. Sci. Rep. 5, Article number: 10972 (2015)

    Google Scholar 

  398. T.G. Gopakumar, M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843 (2004)

    Article  CAS  Google Scholar 

  399. A.-Z. Liu, S.-B. Lei, Structure dependent packing behavior of phthalocyanine on the surface of graphite. Surf. Interface Anal. 39, 33–38 (2007)

    Article  CAS  Google Scholar 

  400. Y. Zhao, Y.-H. Kim, L.J. Simpson, et al., Opening space for H2 storage: Cointercalation of graphite with lithium and small organic molecules. Phys. Rev. B 78, 144102 (2008)

    Article  CAS  Google Scholar 

  401. X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)

    Article  CAS  Google Scholar 

  402. P. Qian, H. Nanjo, N. Sanada, T. Yokoyama, T.M. Suzuki, Self-assembly of alkyl substituted Schiff base and Its Cu(II) complex observed on solution–graphite interface by scanning tunneling microscopy. Chem. Lett. 29, 1118–1119 (2000)

    Article  Google Scholar 

  403. W. Li, Z. Wang, X. Leng et al., Organometallic nanostructures of 1,4-dibromo-2,5-diiodobenzene by metal ions construction on HOPG surface. Surf. Rev. Lett. 23, 1650020, 8 pp (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Coordination/Organometallic Compounds and Composites of Carbon Allotropes. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_7

Download citation

Publish with us

Policies and ethics