Skip to main content

Student Zone: Overview, Training, Practices, and Exercises

  • Chapter
  • First Online:
Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Abstract

In this section, we present several selected experimental procedures (including characterization of samples in some cases), directly borrowed from original articles. These experiments are of distinct grades of difficulty (for professors/researchers or students), requiring or not a special equipment. Not all of them can be easily reproduced; students and their advisors need to make a selection of appropriate practices. We hope this part of the book will be very useful as educational material for M.Sc. and Ph.D. students, working in the areas of nanochemistry and nanotechnology, biochemistry and drug delivery, fabrication of carbon thin films from dispersion, application of composites of various carbon allotropes with polymers, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The image above is reproduced with permission of the Elsevier Science (Inorganica Chimica Acta, 2017, 468, 49–66).

  2. 2.

    These nanocars do not contain carbon only but also N, H, and B, among other elements.

  3. 3.

    Original numeration in Fig. 11.46.

  4. 4.

    Explosion-assisted activation process employs carboxymethylcellulose sodium (CMCS) as the carbon precursor, while potassium nitrate (KNO3) acts as both an explosive and activating reagent.

  5. 5.

    http://www.rsc.org/suppdata/c5/cc/c5cc01588j/c5cc01588j1.pdf. Accessed 21 May 2018.

  6. 6.

    Original numeration of the compounds. See all experimental details for the precursors 1–4 in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829273/.

  7. 7.

    Reproduced from: CrystEngComm, 2015, 17, 1080–1085.

  8. 8.

    OMC = ordered mesoporous carbon.

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  CAS  Google Scholar 

  2. Y. Li, W. Cai, G. Duan, Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 20(3), 615–624 (2008)

    Article  CAS  Google Scholar 

  3. M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)

    Article  CAS  Google Scholar 

  4. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871 (2018)

    Article  CAS  Google Scholar 

  5. P.S. Karthik, A.L. Himaja, S. Prakash Singh, Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 15(4), 219–237 (2014)

    Article  Google Scholar 

  6. J. Hodkiewicz., Raman spectroscopy can detect small changes in the structural morphology of carbon nanomaterials, making it an ideal solution for material sciences (2011), https://www.laboratoryequipment.com/article/2011/06/characterizing-carbon-nanomaterials. Accessed 5 June 2018

  7. C.S. Casari, M. Tommasini, R.R. Tykwinskic, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)

    Article  CAS  Google Scholar 

  8. R. Eba Medjo, Characterization of carbon nanotubes, in Physical and Chemical Properties of Carbon Nanotubes, (Intech, Rijeka, 2013)

    Google Scholar 

  9. R.M. Jacobberger, R. Machhi, J. Wroblewski, et al., Simple graphene synthesis via chemical vapor deposition. J. Chem. Educ. 92, 1903–1907 (2015)

    Article  CAS  Google Scholar 

  10. S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 4, 027116 (2014)

    Article  CAS  Google Scholar 

  11. Q. Lu, C. Wu, D. Liu, H. Wang, et al., A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 19, 900–904 (2017)

    Article  CAS  Google Scholar 

  12. S. Nasimul Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 1–18 (2017). https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  13. A. Kouloumpis, K. Spyrou, K. Dimos, et al., A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids. Front. Mater. 2(10), 1–8 (2015). https://doi.org/10.3389/fmats.2015.00010

    Article  Google Scholar 

  14. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, et al., Synthesis of graphene. Int. Nano Lett. 6(2), 65–83 (2016)

    Article  CAS  Google Scholar 

  15. Q. Zheng, J.-K. Kim, Synthesis, structure, and properties of graphene and graphene oxide, in Graphene for Transparent Conductors. Synthesis, Properties and Applications, (Springer, New York, 2015), pp. 29–38

    Chapter  Google Scholar 

  16. K. Hotta, K. Miyazawa, Synthesis and growth investigation of C60 fullerene nanowhiskers. J. Phys. Conf. Ser. 159, 012021 (2009)

    Article  CAS  Google Scholar 

  17. K.H. Le Ho, S. Campidelli, Synthesis and self-assembly properties of fulleropyrrolidine prepared by Prato reaction. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 025008 (2014). (6 pp)

    Article  CAS  Google Scholar 

  18. N. Jayaratna, M. Olmstead, B. Kharisov, H.V.R. Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)

    Article  CAS  Google Scholar 

  19. M. Mojica, J.A. Alonso, F. Méndez, Synthesis of fullerenes. J. Phys. Org. Chem. 26, 526–539 (2013)

    Article  CAS  Google Scholar 

  20. L.T. Scott, Methods for the chemical synthesis of fullerenes. Angew. Chem. Int. Ed. 43, 4994–5007 (2004)

    Article  CAS  Google Scholar 

  21. C. Zhang, J. Li, E. Liu, et al., Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)

    Article  CAS  Google Scholar 

  22. J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)

    Article  CAS  Google Scholar 

  23. O. Mykhailiv, H. Zubyk, M.E. Plonska-Brzezinska, Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta 468, 49–66 (2017)

    Article  CAS  Google Scholar 

  24. E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep. 7, 4178 (2017)

    Article  CAS  Google Scholar 

  25. A. Aguilar-Elguézabal, W. Antúnez, G. Alonso, et al., Study of carbon nanotubes synthesis by spray pyrolysis and model of growth. Diam. Relat. Mater. 15(9), 1329–1335 (2006)

    Article  CAS  Google Scholar 

  26. S.Y. Chen, H.Y. Miao, J.T. Lue, M.S. Ouyang, Fabrication and field emission property studies of multiwall carbon nanotubes. J. Phys. D. Appl. Phys. 37, 273–279 (2004)

    Article  CAS  Google Scholar 

  27. O. Jasek, P. Synek, L. Zajıckova, M. Elias, V. Kudrle, Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure. J. Electr. Eng. 61(5), 311–313 (2010)

    Google Scholar 

  28. B. Hornbostel, M. Haluska, J. Cech, U. Dettlaff, S. Roth, Arc discharge and laser ablation synthesis of singlewalled carbon nanotubes, in Carbon Nanotubes, ed. by V. N. Popov, P. Lambin (Springer, Berlin, 2006), pp. 1–18

    Google Scholar 

  29. M. Keidar, A. Shashurin, O. Volotskova, Y. Raitses, I.I. Beilis, Mechanism of carbon nanostructure synthesis in arc plasma. Phys. Plasmas 17, 057101 (2010)

    Article  CAS  Google Scholar 

  30. H.W. Zhu, X.S. Li, B. Jiang, et al., Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 366, 664–669 (2002)

    Article  CAS  Google Scholar 

  31. J. Liu, M. Shao, X. Chen, et al., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125, 8088–8089 (2003)

    Article  CAS  Google Scholar 

  32. J. Prasek, J. Drbohlavova, J. Chomoucka, et al., Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872–15884 (2011)

    Article  CAS  Google Scholar 

  33. V. Georgakilas, A.B. Bourlinos, E. Ntararas, et al., Graphene nanobuds: synthesis and selective organic derivatisation. Carbon 110, 51–55 (2016)

    Article  CAS  Google Scholar 

  34. J. Raula, M. Makowska, J. Lahtinen, et al., Selective covalent functionalization of carbon nanobuds. Chem. Mater. 22(15), 4347–4349 (2010)

    Article  CAS  Google Scholar 

  35. C.-H. Nee, S.-L. Yap, T.-Y. Tou, et al., Synthesis of nanodiamonds by femtosecond laser irradiation of etanol. Sci. Rep. 6, 33966 (2016)

    Article  CAS  Google Scholar 

  36. M. Bilal Khan, Z.H. Khan, Nanodiamonds: synthesis and applications, in Nanomaterials and Their Applications, Advanced Structured Materials 84, ed. by Z. H. Khan (Springer Nature, Singapore, 2018). https://doi.org/10.1007/978-981-10-6214-8_1

    Google Scholar 

  37. J.C. Arnault, H.A. Girard, Hydrogenated nanodiamonds: synthesis and surface properties. Curr. Opinion Solid State Mater. Sci. 21, 10–16 (2017)

    Article  CAS  Google Scholar 

  38. A.A. Fokin, T.S. Zhuk, A.E. Pashenko, et al., Oxygen-doped nanodiamonds: synthesis and functionalizations. Org. Lett. 11(14), 3068–3071 (2009)

    Article  CAS  Google Scholar 

  39. J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Dep. 14(7–8), 145–160 (2008)

    Article  CAS  Google Scholar 

  40. A. Stacey, I. Aharonovich, S. Prawer, J.E. Butler, Controlled synthesis of high quality micro/nano-diamonds by microwave plasma chemical vapor deposition. Diam. Relat. Mater. 18(1), 51–55 (2009)

    Article  CAS  Google Scholar 

  41. Q. Wang, R. Kitaura, Y. Yamamoto, S. Arai, H. Shinohara, Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods. Nano Res. 7(12), 1843–1848 (2014)

    Article  CAS  Google Scholar 

  42. T. Okazaki, Chapter 10 – Preparation and properties of carbon nanopeapods, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, 2nd edn. (Elsevier, Amsterdam, 2014), pp. 225–252

    Chapter  Google Scholar 

  43. E. Hernández, V. Meunier, B.W. Smith, et al., Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3(8), 1037–1042 (2003)

    Article  CAS  Google Scholar 

  44. M. Velasquez, C. Batiot-Dupeyrat, J. Gallego, J.J. Fernández, A. Santamaria, Synthesis of carbon nano-chains from glycerol-ethanol decomposition over Ni-Fe alloy catalyst. Diam. Relat. Mater. 70, 105–113 (2016)

    Article  CAS  Google Scholar 

  45. M. Zhang, C. He, E. Liu, et al., Activated carbon nanochains with tailored micro-meso pore structures and their application for supercapacitors. J. Phys. Chem. C 119, 21810–21817 (2015)

    Article  CAS  Google Scholar 

  46. M. Zhang, N. Zhao, J. Sha, et al., Synthesis of novel carbon nano-chains and their application as supercapacitors. J. Mater. Chem. A 2, 16268–16275 (2014)

    Article  CAS  Google Scholar 

  47. S. Kumar Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10, 4064–4067 (2010)

    Article  CAS  Google Scholar 

  48. R. Ravindra, B. Badekai Ramachandra, High yield synthesis of carbon nanofibers in an environmental friendly route. Appl. Nanosci. 1(2), 103–108 (2011)

    Article  CAS  Google Scholar 

  49. J. Ren, F.-F. Li, J. Lau, et al., One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015)

    Article  CAS  Google Scholar 

  50. N. Díaz Silva, B. Valdez Salas, N. Nedev, et al., Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique. J. Nanomater. 2017, 5794312 (2017). (10 pp)

    Article  CAS  Google Scholar 

  51. G. Zou, D. Zhang, C. Dong, et al., Carbon nanofibers: synthesis, characterization, and electrochemical properties. Carbon 44, 828–832 (2006)

    Article  CAS  Google Scholar 

  52. Y. Shen, L. Yan, H. Song, J. Yang, et al., A general strategy for the synthesis of carbon nanofibers from solid carbon materials. Angew. Chem. 51(49), 12202–12205 (2012)

    Article  CAS  Google Scholar 

  53. C.-T. Lin, T.-H. Chen, T.-S. Chin, C.-Y. Lee, H.-T. Chiu, Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon 46, 741–746 (2008)

    Article  CAS  Google Scholar 

  54. J. Liu, M. Shao, Q. Tang, S. Zhang, Y. Qian, Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. J. Phys. Chem. B 107, 6329–6332 (2003)

    Article  CAS  Google Scholar 

  55. G. Povie, Y. Segawa, T. Nishihara, et al., Synthesis of a carbon nanobelt. Science 356(6334), 172–175 (2017)

    Article  CAS  Google Scholar 

  56. X. Lu, J. Wu, After 60 years of efforts: the chemical synthesis of a carbon nanobelt. Chem 2(5), 619–620 (2017)

    Article  CAS  Google Scholar 

  57. T. Ouyang, K. Cheng, F. Yang, et al., From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 5, 14551–14561 (2017)

    Article  CAS  Google Scholar 

  58. C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834 (2017)

    Article  CAS  Google Scholar 

  59. X. Wang, C. Zhao, T. Deng, et al., From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition. Chem. Res. Chin. Univ. 29, 755–758 (2013)

    Article  CAS  Google Scholar 

  60. J. Li, S. Qi Yap, S. Lee Yoong, et al., Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50, 1625–1634 (2012)

    Article  CAS  Google Scholar 

  61. J. Li, Y. Wang, Q. Wei, et al., Plasma-enhanced synthesis of carbon nanocone arrays by magnetic and electric fields coupling HFCVD. Surf. Coat. Technol. 324, 413–418 (2017)

    Article  CAS  Google Scholar 

  62. J.A. Jaszczak, G.W. Robinson, S. Dimovski, Y. Gogotsi, Naturally occurring graphite cones. Carbon 41, 2085–2092 (2003)

    Article  CAS  Google Scholar 

  63. M. Yudasaka, S. Iijima, V.H. Crespi, Single-wall carbon nanohorns and nanocones, in Carbon Nanotubes. Topics in Applied Physics, ed. by A. Jorio, G. Dresselhaus, M. S. Dresselhaus, vol. 111 (Springer, Berlin, Heidelberg, 2007), pp. 605–629

    Google Scholar 

  64. Y. Gogotsi, S. Dimovski, J.A. Libera, Conical crystals of graphite. Carbon 40(12)., 2002), 2263–2267 (2002)

    Article  CAS  Google Scholar 

  65. A.G. Zestos, C. Yang, C.B. Jacobs, D. Hensley, B. Jill Venton, Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst 140(21), 7283–7292 (2015)

    Article  CAS  Google Scholar 

  66. L.B. Sheridan, D.K. Hensley, N.V. Lavrik, et al., Growth and electrochemical characterization of carbon nanospike thin film electrodes. J. Electrochem. Soc. 161(9), H558–H563 (2014)

    Article  CAS  Google Scholar 

  67. H. Wang, J. Wang, S. Xie, W. Liu, C. Niu, Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale 10, 6159–6167 (2018)

    Article  CAS  Google Scholar 

  68. W. Chen, Q. Li, Y. Chen, P. Dai, Z. Jiang, Preparation of carbon nanoball from starch by arc discharge. Adv. Mater. Res. 476–478, 1533–1536 (2012)

    Google Scholar 

  69. K. Pan, H. Ming, Y. Liu, Z. Kang, Large scale synthesis of carbon nanospheres and their application as electrode materials for heavy metal ions detection. New J. Chem. 36, 113–118 (2012)

    Article  CAS  Google Scholar 

  70. P. Karna, M. Ghimire, S. Mishra, S. Karna, Synthesis and characterization of carbon nanospheres. Open Access Library J. 4, e3619 (2017)

    Google Scholar 

  71. R. Vié, E. Drahi, O. Baudino, S. Blayac, S. Berthon-Fabry, Synthesis of carbon nanospheres for the development of inkjet-printed resistive layers and sensors. Flexible Printed Electron. 1, 015003 (2016)

    Article  CAS  Google Scholar 

  72. A. Pramanik, S. Biswas, A.K. Kole, et al., Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties. RSC Adv. 6, 99060–99071 (2016)

    Article  CAS  Google Scholar 

  73. P. Sekar Parasuraman, H.-C. Tsai, T. Imae, et al., In-situ hydrothermal synthesis of carbon nanorice using Nafion as a template. Carbon 77, 660–666 (2014)

    Article  CAS  Google Scholar 

  74. K. Sai Krishna, M. Eswaramoorthy, Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327–330 (2007)

    Article  CAS  Google Scholar 

  75. I.-L. Chang, J.-W. Chou, A molecular analysis of carbon nanotori formation. J. Appl. Phys. 112, 063523 (2012)

    Article  CAS  Google Scholar 

  76. G. Li, H. Yu, L. Xu, et al., General synthesis of carbon nanocages and their adsorption of toxic compounds from cigarette smoke. Nanoscale 3, 3251–3257 (2011)

    Article  CAS  Google Scholar 

  77. S. Xiang, Y. Shi, K. Zhang, et al., Design and synthesis of dodecahedral carbon nanocages incorporated with Fe3O4. RSC Adv. 7, 13257–13262 (2017)

    Article  CAS  Google Scholar 

  78. D.A. Ziolkowska, J.S.D. Jangam, G. Rudakov, T.M. Paronyan, M. Akhtar, G.U. Sumanasekera, J.B. Jasinski, Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon 115, 617–624 (2017)

    Article  CAS  Google Scholar 

  79. Y. Tan, C. Xu, G. Chen, et al., Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 5, 2241–2248 (2013)

    Article  CAS  Google Scholar 

  80. J. Xiang, T. Song, One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun. 53, 10820–10823 (2017)

    Article  CAS  Google Scholar 

  81. H. Hu, J. Zhang, B. Guan, X. Wen (David) Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016)

    Article  CAS  Google Scholar 

  82. Y. Hayashi, N. Takada, Wahyudiono, H. Kanda, M. Goto, One-step synthesis of water–dispersible carbon nanocapsules by pulsed arc discharge over aqueous solution under pressurized argon. Res. Chem. Intermed. 43, 4201–4211 (2017)

    Article  CAS  Google Scholar 

  83. B. Quan, G.-E. Nam, H. Jae Choi, Y. Piao, Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells. Chem. Asian J. 8(4), 765–770 (2013)

    Article  CAS  Google Scholar 

  84. P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated Iron and iron oxides: magnetic properties and reversible lithium storage. J. Phys. Chem. C 115, 3612–3620 (2011)

    Article  CAS  Google Scholar 

  85. T.-C. Liu, Y.-Y. Li, Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44, 2045–2050 (2006)

    Article  CAS  Google Scholar 

  86. D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)

    Article  CAS  Google Scholar 

  87. B. Xu, J. Guo, X. Wang, et al., Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution. Carbon 44, 2631–2634 (2006)

    Article  CAS  Google Scholar 

  88. T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, 613746 (2012). (6 pp)

    Google Scholar 

  89. Z. Yao, X. Zhu, X. Li, Y. Xie, Synthesis of novel Y-junction hollow carbon nanotrees. Carbon 45, 1566–1570 (2007)

    Article  CAS  Google Scholar 

  90. Z. He, J.-L. Maurice, C. Seok Lee, C. Sorin Cojocarub, D. Pribat, Growth mechanisms of carbon nanostructures with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition. CrystEngComm 16, 2990–2995 (2014)

    Article  CAS  Google Scholar 

  91. T.-N. Ye, L.-B. Lv, X.-H. Li, M. Xu, J.-S. Chen, Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem. Int. Ed. 53, 6905–6909 (2014)

    Article  CAS  Google Scholar 

  92. X. Lepro, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48, 3621–3627 (2010)

    Article  CAS  Google Scholar 

  93. G. Chen, D.N. Futaba, K. Hata, Catalysts for the growth of carbon nanotube “forests” and superaligned arrays. MRS Bull. 42, 802–808 (2017)

    Article  CAS  Google Scholar 

  94. K.K.S. Lau, J. Bico, K.B.K. Teo, et al., Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)

    Article  CAS  Google Scholar 

  95. N. Yang, M. Li, J. Patscheider, S. Ki Youn, H. Gyu Park, A forest of sub-1.5-nm-wide single-walled carbon nanotubes over an engineered alumina support. Sci. Rep. 7, 46725 (2017)

    Article  Google Scholar 

  96. Y.B. Zhang, S.P. Lau, Field emission from nanoforest carbon nanotubes grown on cobalt-containing amorphous carbon omposite films. J. Appl. Phys. 101, 033524 (2007)

    Article  CAS  Google Scholar 

  97. J. Du, Z. Liu, Z. Li, B. Han, Z. Sun, Y. Huang, Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater. Lett. 59, 456–458 (2005)

    Article  CAS  Google Scholar 

  98. B.I. Kharisov, A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2(3), 190–200 (2008)

    Article  CAS  Google Scholar 

  99. H. Heli, A. Rahi, Synthesis and applications of nanoflowers. Recent Pat. Nanotechnol. 10(2), 86–115 (2016)

    Article  CAS  Google Scholar 

  100. S. Thongtem, P. Singjai, T. Thongtem, S. Preyachoti, Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater. Sci. Eng. A 423, 209–213 (2006)

    Article  CAS  Google Scholar 

  101. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun., 3624–3626 (2009)

    Google Scholar 

  102. M. Wei, G. Ying Zeng, Y. Liu, Q. Lu, Detection of heavy metals based on boron-doped diamond nanograss array, boron-doped diamond film and glassy carbon electrodes. Asian J. Chem. 25(2), 861–863 (2013)

    Article  CAS  Google Scholar 

  103. Y. Luo, D. Kong, Y. Jia, et al., Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv. 3, 5851–5859 (2013)

    Article  CAS  Google Scholar 

  104. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. J. Mater. Chem. 16, 2984–2989 (2006)

    Article  CAS  Google Scholar 

  105. Y. Wang, Z. Jun Han, S. Fung Yu, et al., Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64, 230–236 (2013)

    Article  CAS  Google Scholar 

  106. E.J. Hwang, S.K. Lee, M.G. Jeong, Y.B. Lee, D.S. Lim, Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder. J. Nanosci. Nanotechnol. 12(7), 5875–5879 (2012)

    Article  CAS  Google Scholar 

  107. Y. Yao, C. Lian, G. Wu, et al., Synthesis of “sea urchin”-like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants. Appl. Catal. B Environ. 219, 563–571 (2017)

    Article  CAS  Google Scholar 

  108. X. Hoa Nguen, Y. Bok Lee, C. Hyun Lee, D.-S. Lim, Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites. Carbon 48(10), 2910–2916 (2010)

    Article  CAS  Google Scholar 

  109. N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen, Z. An, Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42, 8255–8263 (2017)

    Article  CAS  Google Scholar 

  110. C. Cui, X. Li, Z. Hu, J. Xu, H. Liu, J. Ma, Growth of MoS2@C nanobowls as a lithium-ion battery anode material. RSC Adv. 5, 92506–92514 (2015)

    Article  CAS  Google Scholar 

  111. A.S.H. Razi, K.Y. Jin, P. Yong-Ki, L. Chul Wee, Nano bowls of carbon by oxidative chopping of carbon nano sphere. Chem. Lett. 36(10), 1202–1203 (2007)

    Article  Google Scholar 

  112. M. Gwan Hahm, A. Leela Mohana Reddy, D.P. Cole, et al., Carbon nanotubes-nanocups hybrid structures for high power supercapacitor applications. Nano Lett. 12(11), 5616–5621 (2012)

    Article  CAS  Google Scholar 

  113. S. Majeed, J. Zhao, L. Zhang, S. Anjum, Z. Liu, G. Xu, Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnol. Rev. 2(6), 615–635 (2013)

    Article  CAS  Google Scholar 

  114. B. Kumar Gupta, G. Kedawat, P. Kumar, et al., Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays. RSC Adv. 6, 9932–9939 (2016)

    Article  CAS  Google Scholar 

  115. J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8, 29628–29636 (2016)

    Article  CAS  Google Scholar 

  116. Y. Soo Yun, S. Youn Cho, J. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993–1998 (2013)

    Article  CAS  Google Scholar 

  117. Y. Soo Yun, K.-Y. Park, B. Lee, et al., Sodium-ion storage in pyroprotein-based carbon nanoplates. Adv. Mater. 27, 6914–6921 (2015)

    Article  CAS  Google Scholar 

  118. M.E. Lee, N.R. Kim, M.Y. Song, H.-J. Jin, Microporous carbon nanoplate/amorphous ruthenium oxide hybrids as supercapacitor electrodes. J. Nanosci. Nanotechnol. 16(10), 10431–10436 (2016)

    Article  CAS  Google Scholar 

  119. Y. Wei, F. Yan, X. Tang, et al., Solvent-controlled synthesis of NiO−CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage. ACS Appl. Mater. Interfaces 7, 21703–21711 (2015)

    Article  CAS  Google Scholar 

  120. NEC, NEC discovers “carbon nanobrush,” the world’s first fibrous aggregate of carbon nanohorns (30 June 2016), https://www.nec.com/en/press/201606/global_20160630_01.html. Accessed 26 Apr 2018

  121. A. Cao, V.P. Veedu, X. Li, et al., Multifunctional brushes made from carbon nanotubes. Nat. Mater. 4, 540–545 (2005)

    Article  CAS  Google Scholar 

  122. R. Villegas Salvatierra, D. Zakhidov, J. Sha, et al., Graphene carbon nanotube carpets grown using binary catalysts for high-performance lithium-ion capacitors. ACS Nano 11, 2724–2733 (2017)

    Article  CAS  Google Scholar 

  123. P. Szroeder, N.G. Tsierkezos, P. Scharff, U. Ritter, Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48, 4489–4496 (2010)

    Article  CAS  Google Scholar 

  124. F. Seichepine, S. Salomon, M. Collet, et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology 23, 095303 (2012). (7 pp)

    Article  CAS  Google Scholar 

  125. S. Hu, Y. Dong, J. Yang, J. Liu, S. Cao, Formation and nonlinear optical properties of carbon nanospindles from laser ablation. CrystEngComm 14, 4243–4246 (2012)

    Article  CAS  Google Scholar 

  126. H.-D. Lim, Y. Soo Yun, Y. Ko, et al., Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon 118, 114–119 (2017)

    Article  CAS  Google Scholar 

  127. Q. Huang, L. Liu, D. Wang, J. Liu, Z. Huang, Z. Zheng, One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A 4, 6802–6808 (2016)

    Article  CAS  Google Scholar 

  128. H. Eun Cho, S. Jung Seo, M.-S. Khil, H. Kim, Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 16(2), 271–275 (2015)

    Article  CAS  Google Scholar 

  129. L. Li, A. Manthiram, O- and N-doped carbon nanowebs as metal-free catalysts for hybrid li-air batteries. Adv. Energy Mater. 4(10), 1301795 (2014)

    Article  CAS  Google Scholar 

  130. S. Luo, Y. Luo, H. Wu, et al., Self-assembly of 3D carbon nanotube sponges: a simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 29, 1603549 (2017)

    Article  CAS  Google Scholar 

  131. X. Gui, J. Wei, K. Wang, et al., Carbon nanotube sponges. Adv. Mater. 22, 617–621 (2010)

    Article  CAS  Google Scholar 

  132. X. Gui, H. Li, K. Wang, et al., Recyclable carbon nanotube sponges for oil absorption. Acta Mater. 59, 4798–4804 (2011)

    Article  CAS  Google Scholar 

  133. K. Zhu, Y.-Y. Shang, P.-Z. Sun, et al., Oil spill cleanup from sea water by carbon nanotube sponges. Front. Mater. Sci. 7(2), 170–176 (2013)

    Article  Google Scholar 

  134. Z.-Y. Huo, Y. Luo, X. Xie, et al., Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. Environ. Sci. Nano 4, 2010–2017 (2017)

    Article  CAS  Google Scholar 

  135. N. Frese, S. Taylor Mitchell, A. Bowers, A. Gölzhäuser, K. Sattler, Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphthalene precursor solution. J. Carbon Res. 3, 23 (2017)

    Article  CAS  Google Scholar 

  136. N. Frese, S. Taylor Mitchell, C. Neumann, A. Bowers, A. Gölzhäuser, K. Sattler, Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J. Nanotechnol. 7, 2065–2073 (2016)

    Article  CAS  Google Scholar 

  137. D. Li, L. Pan, J. Qian, D. Liu, Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol–gel method. Carbon 48, 170–175 (2010)

    Article  CAS  Google Scholar 

  138. S. Vaudreuil, M. Bousmina, Stretchable carbon nanosprings production by a catalytic growth process. J. Nanosci. Nanotechnol. 9(8), 4880–4885 (2009)

    Article  CAS  Google Scholar 

  139. Y.J. Lee, S.R. Ham, J.H. Kim, et al., Highly dispersible buckled nanospring carbon nanotubes for polymer nano composites. Sci. Rep. 8, 4851 (2018)

    Article  CAS  Google Scholar 

  140. D. Li, L. Pan, K. Liu, W. Peng, Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering. J. Mater. Res. 28(10), 1316–1325 (2013)

    Article  CAS  Google Scholar 

  141. L. Liu, J. Zhao, Toroidal and coiled carbon nanotubes, in Syntheses and Applications of Carbon Nanotubes and Their Composites, (Intech, Rijeka, 2013), pp. 257–281

    Google Scholar 

  142. R. Cui, L. Pan, C. Deng, Synthesis of carbon nanocoils on substrates made of plant fibers. Carbon 89, 47–52 (2015)

    Article  CAS  Google Scholar 

  143. N. Tang, W. Kuo, C. Jeng, et al., Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2), 781–788 (2010)

    Article  CAS  Google Scholar 

  144. Y. Shang, C. Hua, W. Xu, et al., Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett. 16, 1768–1775 (2016)

    Article  CAS  Google Scholar 

  145. E.-X. Ding, J. Wang, H.-Z. Geng, et al., Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Sci. Rep. 5, 11281 (2015)

    Article  CAS  Google Scholar 

  146. K. Mae, H. Toyama, E. Nawa-Okita, et al., Self-organized micro-spiral of single-walled carbon nanotubes. Sci. Rep. 7, 5267 (2017)

    Article  CAS  Google Scholar 

  147. A. Shaikjee, N.J. Coville, The synthesis, properties and uses of carbon materials with helical morphology. J. Adv. Res. 3, 195–223 (2012)

    Article  CAS  Google Scholar 

  148. X. Liu, X. Tang, Y. Hou, Q. Wu, G. Zhang, Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Adv. 5, 81713–81722 (2015)

    Article  CAS  Google Scholar 

  149. D. Castelvecchi, Nanothermometer takes the temperature of living cells (31 July 2013). https://www.nature.com/news/nanothermometer-takes-the-temperature-of-living-cells-1.13473. Accessed 28 Apr 2018

  150. Y. Gao, Y. Bando, Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599 (2002)

    Article  CAS  Google Scholar 

  151. S. Akita, Y. Nakayama, et al., Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl. Phys. Lett. 79(11), 1691–1693 (2001)

    Article  CAS  Google Scholar 

  152. C.-H. Ke, N. Pugno, B. Peng, H.D. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids 53, 1314–1333 (2005)

    Article  CAS  Google Scholar 

  153. J. Chang, B.-K. Min, J. Kim, S.-J. Lee, L. Lin, Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18, 065017 (2009). (7 pp)

    Article  CAS  Google Scholar 

  154. J. Zare, A. Shateri, Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy. Physica E 90, 67–75 (2017)

    Article  CAS  Google Scholar 

  155. T. Sasaki, J.-F. Morin, M. Lu, J.M. Tour, Synthesis of a single-molecule nanotruck. Tetrahedron Lett. 48, 5817–5820 (2007)

    Article  CAS  Google Scholar 

  156. S.S. Konyukhov, N.N. Artemov, I.A. Kaliman, I.V. Kupchenko, A.V. Nemukhin, A.A. Moskovskii, Electrostatically actuated carbon nanowire nanotweezers. Mosc. Univ. Chem. Bull. 65(4), 219–220 (2010)

    Article  Google Scholar 

  157. A. Nemati, H. Nejat Pishkenari, A. Meghdari, S. Sohrabpour, Directing the diffusive motion of fullerene-based nanocars using nonplanar gold surfaces. Phys. Chem. Chem. Phys. 20, 332–344 (2018)

    Article  CAS  Google Scholar 

  158. M. Ghorbanzadeh Ahangari, M. Darvish Ganji, A. Jalali, Interaction between fullerene-wheeled nanocar and gold substrate: a DFT study. Physica E 83, 174–179 (2016)

    Article  CAS  Google Scholar 

  159. AZoNano, Nanocars and nanoguitars leading to better understanding of construction and properties of materials at the nanoscale (24 Jan 2007.), https://www.azonano.com/article.aspx?ArticleID=1831. Accessed 29 Apr 2018

  160. G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 2(3), 473–487 (2009)

    Article  CAS  Google Scholar 

  161. D. Wang, Y. Wang, H. Liu, W. Xu, L. Xu, Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chem. Eng. J. 342, 474–483 (2018)

    Article  CAS  Google Scholar 

  162. D. Wang, S. Liu, L. Jiao, G. Fang, G. Geng, J. Ma, Unconventional mesopore carbon nanomesh prepared through explosioneassisted activation approach: a robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon 119, 30–39 (2017)

    Article  CAS  Google Scholar 

  163. H. Wang, L. Zhi, K. Liu, et al., Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv. Funct. Mater. 25, 5420–5427 (2015)

    Article  CAS  Google Scholar 

  164. H. Kohno, T. Hasegawa, Chains of carbon nanotetrahedra/nanoribbons. Sci. Rep. 5, 8430 (2015)

    Article  CAS  Google Scholar 

  165. H. Kohno, Y. Masuda, In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending. Appl. Phys. Lett. 106, 193103 (2015)

    Article  CAS  Google Scholar 

  166. T. Hasegawaa, H. Kohno, Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth. Phys. Chem. Chem. Phys. 17, 3009–3013 (2015)

    Article  CAS  Google Scholar 

  167. A. Yamauchi, H. Kohno, Verification of mechanism for the formation of carbon nanotetrahedra using Electron beam tomography. J. Nanosci. Nanotechnol. 17(1), 842–845 (2017)

    Article  CAS  Google Scholar 

  168. B. Sun, S. Chen, H. Liu, G. Wang, Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv. Funct. Mater. 25, 4436–4444 (2015)

    Article  CAS  Google Scholar 

  169. C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater. 2011, 129298 (2011). (8 pp)

    Article  CAS  Google Scholar 

  170. X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4), 3589–3597 (2013)

    Article  CAS  Google Scholar 

  171. W. Li, S. Wang, Y. Li, et al., One-step hydrothermal synthesis of fluorescent nanocrystallinecellulose/carbon dot hydrogels. Carbohydr. Polym. 175, 7–17 (2017)

    Article  CAS  Google Scholar 

  172. C.S. Sharma, M.M. Kulkarni, A. Sharma, M. Madou, Synthesis of carbón xerogel particles and fractal-like structures. Chem. Eng. Sci. 64, 1536–1543 (2009)

    Article  CAS  Google Scholar 

  173. M. Kakunuri, S. Vennamalla, C.S. Sharma, Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5, 4747–4753 (2015)

    Article  CAS  Google Scholar 

  174. E.J. Zanto, S.A. Al-Muhtaseb, J.A. Ritter, Sol-gel-derived carbon aerogels and xerogels: design of experiments approach to materials synthesis. Ind. Eng. Chem. Res. 41, 3151–3162 (2002)

    Article  CAS  Google Scholar 

  175. M.-F. Yan, L.-H. Zhang, R. He, Z.-F. Liu, Synthesis and characterization of carbon aerogels with different catalysts. J. Porous. Mater. 22, 699–703 (2015)

    Article  CAS  Google Scholar 

  176. E.G. Calvo, C.O. Ania, L. Zubizarreta, J.A. Menendez, A. Arenillas, Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors. Energy Fuel 24, 3334–3339 (2010)

    Article  CAS  Google Scholar 

  177. J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook, Advances in Sol-Gel Derived Materials and Technologies, ed. by M. A. Aegerter et al. (Springer Science+Business Media, LLC, Dordrecht, 2011). https://doi.org/10.1007/978-1-4419-7589-8_36

    Chapter  Google Scholar 

  178. P.S. Skell, L.M. Jackman, S. Ahmed, M.L. McKee, P.B. Shedin, Some reactions and properties of molecular Cz. An experimental and theoretical treatment. J. Am. Chem. Soc. 111, 4422–4429 (1989)

    Article  CAS  Google Scholar 

  179. C.G. Parigger, J.O. Hornkohl, A.M. Keszler, L. Nemes, Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite. Appl. Opt. 42(30), 6192–6198 (2003)

    Article  CAS  Google Scholar 

  180. Q. Sun, L. Cai, S. Wang, et al., Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)

    Article  CAS  Google Scholar 

  181. C.S. Casari, C.S. Giannuzzi, V. Russo, Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon 104, 190–195 (2016)

    Article  CAS  Google Scholar 

  182. C.B. Cannella, N. Goldman, Carbyne fiber synthesis within evaporating metallic liquid carbon. J. Phys. Chem. C 119, 21605–21611 (2015)

    Article  CAS  Google Scholar 

  183. A. Kucherik, A. Antipov, S. Kutrovskaya, A. Osipov, A. Povolotckaia, S. Arakelian, Metal-carbyne clusters for SERS realization. J. Phys. Conf. Ser. 951, 012020 (2018)

    Article  CAS  Google Scholar 

  184. J.B. Wallace, D. Chen, L. Shao, Carbon displacement-induced single carbon atomic chain formation and its effects on sliding of SiC fibers in SiC/graphene/SiC composite. Mater. Res. Lett. 4(1), 55–61 (2016)

    Article  Google Scholar 

  185. C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)

    Article  CAS  Google Scholar 

  186. L. Giacomo Bettini, F. Della Foglia, P. Piseri, P. Milani, Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid. Nanotechnology 27, 115403 (2016). (6 pp)

    Article  CAS  Google Scholar 

  187. S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)

    Article  CAS  Google Scholar 

  188. A. Fadllan, P. Marwoto, M.P. Aji, Susanto, R.S. Iswari, Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Conf. Proc. 1788, 030069 (2017)

    Article  CAS  Google Scholar 

  189. J. Prakash Naik, P. Sutradhar, M. Saha, Molecular scale rapid synthesis of graphene quantum dots (GQDs). J. Nanostruct. Chem. 7, 85–89 (2017)

    Article  CAS  Google Scholar 

  190. C. Kiang Chua, Z. Sofer, P. Simek, et al., Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9(3), 2548–2555 (2015)

    Article  CAS  Google Scholar 

  191. H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)

    Article  CAS  Google Scholar 

  192. P. Roy, P.-C. Chen, A. Prakash Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18(8), 447–458 (2015)

    Article  CAS  Google Scholar 

  193. S. Kellici, J. Acord, N.P. Power, et al., Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Adv. 7, 14716–14720 (2017)

    Article  CAS  Google Scholar 

  194. H. Teymourinia, M. Salavati-Niasari, O. Amiri, H. Safardoust-Hojaghan, Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq. 242, 447–455 (2017)

    Article  CAS  Google Scholar 

  195. M. Ozhukil Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: synthesis, properties and sensing applications. Appl. Mater. Today 9, 350–371 (2017)

    Article  Google Scholar 

  196. G.N. Yushin, E.N. Hoffman, A. Nikitin, et al., Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon 43, 2075–2082 (2005)

    Article  CAS  Google Scholar 

  197. M.R. Lukatskaya, J. Halim, B. Dyatkin, et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)

    Article  Google Scholar 

  198. J. Gläsel, J. Diao, Z. Feng, et al., Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)

    Article  CAS  Google Scholar 

  199. L. Zhang, X. Qin, G. Shao, et al., A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)

    Article  CAS  Google Scholar 

  200. E.N. Hoffman, G. Yushin, B.G. Wendler, et al., Carbide-derived carbon membrane. Mater. Chem. Phys. 112, 587–591 (2008)

    Article  CAS  Google Scholar 

  201. B. Kruner, C. Odenwald, A. Tolosa, et al., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustain. Energy Fuels 1, 1588–1600 (2017)

    Article  Google Scholar 

  202. A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: more hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137, 5969–5979 (2015)

    Article  CAS  Google Scholar 

  203. Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of metal−organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)

    Article  CAS  Google Scholar 

  204. X. Feng, X. Bo, L. Guo, CoM (M = Fe, Cu, Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions. J. Power Sources 389, 249–259 (2018)

    Article  CAS  Google Scholar 

  205. D. Chen, C. Chen, W. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)

    Article  CAS  Google Scholar 

  206. M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218–245 (2017)

    Article  Google Scholar 

  207. X.-F. Guo, G.-J. Kim, Synthesis of ultrafine carbon black by pyrolysis of polymers using a direct current thermal plasma process. Plasma Chem. Plasma Process. 30, 75–90 (2010)

    Article  CAS  Google Scholar 

  208. J.J. Ivie, L.J. Forney, A numerical model of the synthesis of carbon black by benzene pyrolysis. AlChE J. 34(11), 1813–1820 (1988)

    Article  CAS  Google Scholar 

  209. Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure. Carbon 136, 248–254 (2018)

    Article  CAS  Google Scholar 

  210. N. Han, H. Liu, S. Zhou, J. Zhao, Possible formation of graphyne on transition metal surfaces: a competition with graphene from the chemical potential point of view. J. Phys. Chem. C 120, 14699–14705 (2016)

    Article  CAS  Google Scholar 

  211. M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80(3), 519–532 (2008)

    Article  CAS  Google Scholar 

  212. D. Bousa, J. Luxa, D. Sedmidubsky, et al., Nanosized graphane (C1H1.14)n by hydrogenation of carbon nanofibers by Birch reduction method. RSC Adv. 6, 6475–6485 (2016)

    Article  CAS  Google Scholar 

  213. Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)

    Article  CAS  Google Scholar 

  214. V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)

    Article  CAS  Google Scholar 

  215. C.F. Woellner, P.A. da Silva Autreto, D.S. Galvao, One side-graphene hydrogenation (graphone): substrate effects. MRS Adv. 1(20). (Nanomaterials and Synthesis)), 1429–1434 (2016)

    Article  CAS  Google Scholar 

  216. S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4, 3862 (2014)

    Article  CAS  Google Scholar 

  217. A. Kumar Sharma, R. Saini, R. Singh, A. Mahajan, R.K. Bedi, D.K. Aswal, Substituted copper phthalocyanine/multiwalled carbon nanotubes hybrid material for Cl2 sensing application. AIP Conf. Proc. 1591, 671–673 (2014)

    Article  CAS  Google Scholar 

  218. L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)

    Article  CAS  Google Scholar 

  219. A.N. Khlobystov, A. Hirsch, Organometallic and coordination chemistry of carbon nanomaterials. (Editorial). Dalton Trans. 43, 7345–7345 (2014)

    Article  CAS  Google Scholar 

  220. Z.-Y. Wu, W. Wang, Terpyridine chelate complex-functionalized single-walled carbon nanotubes: synthesis and redox properties. Fullerenes, Nanotubes, Carbon Nanostruct. 23(2), 131–141 (2015)

    Article  CAS  Google Scholar 

  221. S.M. Alshehri, T. Ahamad, A. Aldalbahi, N. Alhokbany, Pyridylimine cobalt(II) and nickel(II) complex functionalized multiwalled carbon nanotubes and their catalytic activities for ethylene oligomerization. Adv. Polym. Technol. 35(1) (2016). https://doi.org/10.1002/adv.21528

  222. S. Sarkar, H. Zhang, J.-W. Huang, et al., Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)

    Article  CAS  Google Scholar 

  223. T. Ohmura, A. Usuki, Y. Mukae, et al., Supramolecular porphyrin-based metal–organic frameworks with fullerenes: crystal structures and preferential intercalation of C70. Chem. Asian J. 11, 700–704 (2016)

    Article  CAS  Google Scholar 

  224. J. Kaminsky, J. Vícha, P. Bour, M. Straka, Properties of the only thorium fullerene, Th@C84, uncovered. J. Phys. Chem. A 121, 3128–3135 (2017)

    Article  CAS  Google Scholar 

  225. P. Chakraborty, A. Nag, G. Paramasivam, et al., Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3− (n = 1−9). ACS Nano 12(3), 2415–2425 (2018)

    Article  CAS  Google Scholar 

  226. N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)

    Article  CAS  Google Scholar 

  227. L.M. Manus, D.J. Mastarone, E.A. Waters, et al., Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10(2), 484–489 (2010)

    Article  CAS  Google Scholar 

  228. L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. J. Nanosci. Nanotechnol. 15(2), 989–999 (2015)

    Article  CAS  Google Scholar 

  229. A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: first supramolecular complexes of carbon nano onions. Chem. Mater. 20(5), 1685–1687 (2008)

    Article  CAS  Google Scholar 

  230. B.-S. Xu, Prospects and research progress in nano onion-like fullerenes. New Carbon Mater. 23(4), 289–301 (2008)

    Article  CAS  Google Scholar 

  231. A. Arul, M. Christy, M. Young Oh, Y. Sung Lee, K. Suk Nahm, Nanofiber carbon-supported phthalocyanine metal complexes as solid electrocatalysts for lithium-air batteries. Electrochim. Acta 218, 335–344 (2016)

    Article  CAS  Google Scholar 

  232. J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)

    Article  CAS  Google Scholar 

  233. R.A. Giguere, in Organic Synthesis: Theory and Application, ed. by T. Hudlicky (Ed), vol. 1, (JAI Press Inc., Bingley, UK, 1989), pp. 103–172

    Google Scholar 

  234. G. Roussy, J.A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frecuency Fields (Wiley, Chichester/New York/Brisbane/Toronto/Singapore, 1995)

    Google Scholar 

  235. T. Matsumura-Inoue, M. Tanabe, T. Minami, T. Ohashi, A remarkably rapid synthesis of ruthenium(II) polypyridine complexes by microwave irradiation. Chem. Lett., 2443–2446 (1994)

    Article  Google Scholar 

  236. F. Wiesbrock, R. Hoogenboom, U.S. Schubert, Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol. Rapid Commun. 25, 1739–1764 (2004)

    Article  CAS  Google Scholar 

  237. J. Aguilera-Sigalat, D. Bradshaw, Synthesis and applications of metal-organic framework – quantum dot (QD@MOF) composites. Coord. Chem. Rev. 307(2), 267–291 (2016)

    Article  CAS  Google Scholar 

  238. G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)

    Article  CAS  Google Scholar 

  239. E. Ghasemi, E. Alimardani, E. Shams, G.A. Koohmareh, Modification of glassy carbon electrode with iron-terpyridine complex and iron-terpyridine complex covalently bonded to ordered mesoporous carbon substrate: preparation, electrochemistry and application to H2O2 determination. J. Electroanal. Chem. 789, 92–99 (2017)

    Article  CAS  Google Scholar 

  240. K. Deng, X. Li, H. Huang, A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim. Acta 183(7), 2139–2145 (2016)

    Article  CAS  Google Scholar 

  241. J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)

    Article  CAS  Google Scholar 

  242. Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)

    Article  CAS  Google Scholar 

  243. R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)

    Article  CAS  Google Scholar 

  244. X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)

    Article  CAS  Google Scholar 

  245. C. Petit, B. Mendoza, D. O’Donnell, T.J. Bandosz, Effect of graphite features on the properties of metal–organic framework/graphite hybrid materials prepared using an in situ process. Langmuir 27(16), 10234–10242 (2011)

    Article  CAS  Google Scholar 

  246. C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)

    Article  CAS  Google Scholar 

  247. Y. Sim, J. Park, Y.J. Kim, M.J. Seong, S. Hong, Synthesis of graphene layers using graphite dispersion in aqueous surfactant solutions. J. Korean Phys. Soc. 58(4), 938–942 (2011)

    Article  CAS  Google Scholar 

  248. L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)

    Article  CAS  Google Scholar 

  249. A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Sterioti, A.K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16), 1841–1845 (2009)

    Article  CAS  Google Scholar 

  250. Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010)

    Article  CAS  Google Scholar 

  251. J. Liu, H. Jeong, J. Liu, K. Lee, J.Y. Park, Y. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48(8), 2282–2289 (2010)

    Article  CAS  Google Scholar 

  252. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)

    Article  CAS  Google Scholar 

  253. Y. Liu, R.L. Vander Wal, V.N. Khabashesku, Functionalization of carbon nano-onions by direct fluorination. Chem. Mater. 19(4), 778–786 (2007)

    Article  CAS  Google Scholar 

  254. M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L. Echegoyen, Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chemistry 18(9), 2600–2608 (2012)

    Article  CAS  Google Scholar 

  255. E. Wajs, A. Molina-Ontoria, T.T. Nielsen, L. Echegoyen, A. Fragoso, Supramolecular solubilization of cyclodextrinmodified carbon nano-onions by host-guest interactions. Langmuir 31(1), 535–541 (2015)

    Article  CAS  Google Scholar 

  256. K.N. Semenova, N.A. Charykov, E.R. López, et al., Pressure dependence of the solubility of light fullerenes in n-nonane. J. Chem. Thermodyn. 112, 259–266 (2017)

    Article  CAS  Google Scholar 

  257. K.J. Moor, S.D. Snow, J.-H. Kim, Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates. Environ. Sci. Technol. 49(10), 5990–5998 (2015)

    Article  CAS  Google Scholar 

  258. Y.J. Marcus, Solubilities of buckminsterfullerene and sulfur hexafluoride in various solvents. Phys. Chem. B 101(42), 8617–8623 (1997)

    Article  CAS  Google Scholar 

  259. U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev, N.A. Davidenko, V.V. Cherepanov, A.I. Senenko, O.A. Marchenko, A.G. Naumovets, Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct. 23(6), 530–534 (2015)

    Article  CAS  Google Scholar 

  260. S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)

    Article  CAS  Google Scholar 

  261. J. Texter, Graphene dispersions. Curr. Opin. Colloid Interface Sci. 19(2), 163–174 (2014)

    Article  CAS  Google Scholar 

  262. U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011)

    Article  CAS  Google Scholar 

  263. C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf. A Physicochem. Eng. Asp. 353(1), 52–56 (2010)

    Article  CAS  Google Scholar 

  264. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2(11), 3289–3294 (2010)

    Article  CAS  Google Scholar 

  265. Y. Zhu, X. Xu, B. Wang, Z. Feng, Surface modification and dispersion of nanodiamond in clean oil. China Particuol. 2(3), 132–134 (2004)

    Article  CAS  Google Scholar 

  266. Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 2015(29), 11, 3575–3581

    Article  CAS  Google Scholar 

  267. L. Deng, X. Wang, Y. Kuang, C. Wang, L. Luo, F. Wang, X. Sun, Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8(9), 2810–2821 (2015)

    Article  CAS  Google Scholar 

  268. F. Arcudi, L. Dordevic, M. Prato, Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew. Chem. Int. Ed. Engl. 55(6), 2107–2112 (2016)

    Article  CAS  Google Scholar 

  269. J.I. Paredes, M. Burghard, Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20, 5149–5152 (2004)

    Article  CAS  Google Scholar 

  270. M. Jellur Rahman, T. Mieno, Water-dispersible multiwalled carbon nanotubes obtained from citric-acid-assisted oxygen plasma functionalization. J. Nanomater. 2014, 508192 (2014). (9 pp)

    Google Scholar 

  271. A. Graf, Y. Zakharko, S.P. Schießl, C. Backes, M. Pfohl, B.S. Flavel, J. Zaumseil, Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016)

    Article  CAS  Google Scholar 

  272. K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, M.R. Abhilash, Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater. 2015, 381275 (2015). (6 pp)

    Article  CAS  Google Scholar 

  273. O. Byl, J. Jie Liu, J.T. Yates Jr., Etching of carbon nanotubes by ozones. A surface area study. Langmuir 21, 4200–4204 (2005)

    Article  CAS  Google Scholar 

  274. L.P. Lukhele, B.B. Mamba, N. Musee, V. Wepener, Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J. Nanomater. 2015, 219074 (2015). (19 pp)

    Article  CAS  Google Scholar 

  275. Y. Liu, I. Zhitomirsky, Aqueous electrostatic dispersion and heterocoagulation of multiwalled carbon nanotubes and manganese dioxide for the fabrication of supercapacitor electrodes and devices. RSC Adv. 4, 45481–45489 (2014)

    Article  CAS  Google Scholar 

  276. M. Park, S. Kim, H. Kwon, et al., Selective dispersion of highly pure large-diameter semiconducting carbon nanotubes by a flavin for thin-film transistors. ACS Appl. Mater. Interfaces 8, 23270–23280 (2016)

    Article  CAS  Google Scholar 

  277. K. Huang, A. Saha, K. Dirian, C. Jiang, P.-L. Chu, J.M. Tour, D.M. Guldi, A.A. Martí, Carbon nanotubes dispersed in aqueous solution by ruthenium(II) polypyridyl complexes. Nanoscale 8, 13488–13497 (2016)

    Article  CAS  Google Scholar 

  278. S.H. Min, H.-I. Kim, K.-s. Kim, et al., Selective dispersion of single-walled carbon nanotubes by binaphthyl based conjugated polymers: integrated experimental and simulation approach. Polymer 96, 63–69 (2016)

    Article  CAS  Google Scholar 

  279. C. Hu, Y. Zhang, G. Bao, et al., DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 109, 20072–20076 (2005)

    Article  CAS  Google Scholar 

  280. S.S. Karajanagi, H. Yang, P. Asuri, et al., Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4), 1392–1395 (2006)

    Article  CAS  Google Scholar 

  281. C. Jiang, A. Saha, C. Xiang, et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano (7, 5), 4503–4510 (2013)

    Article  CAS  Google Scholar 

  282. R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)

    Article  CAS  Google Scholar 

  283. L. Henao-Holguín, V. Meza-Laguna, T.Y. Gromovoy, E. Basiuk, M. Rivera, V.A. Basiuk, Solvent-free covalent functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with crown ethers. J. Nanosci. Nanotechnol. 16(6), 6173–6184 (2016)

    Article  CAS  Google Scholar 

  284. J. Chen, P.C. Collier, Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109(16), 7605–7609 (2005)

    Article  CAS  Google Scholar 

  285. H. Wu, Z. Chen, J. Zhang, et al., Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb-level H2S sensing at room temperature. J. Mater. Chem. A 4, 1096–1104 (2016)

    Article  CAS  Google Scholar 

  286. D.M. Guldi, G.M. Aminur Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)

    Article  CAS  Google Scholar 

  287. D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbon nanotubes. Macromolecules 42, 3340–3346 (2009)

    Article  CAS  Google Scholar 

  288. N. Tagmatarchis, M. Prato, D.M. Guldi, Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E 29(3), 546–550 (2005)

    Article  CAS  Google Scholar 

  289. G.E. Jay Poinern, A Laboratory Course in Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2015)., 230 pp

    Google Scholar 

  290. http://www.chemengr.ucsb.edu/~ceweb/faculty/scott/Chemical%20SOPs/CarbonPowder.pdf. Accessed 6 July 2018

  291. http://www.carbonfiber.gr.jp/english/material/safety.html. Accessed 6 July 2018

  292. https://www.safeworkaustralia.gov.au/system/files/documents/1702/safe_handling_and_use_of_carbon_nanotubes.pdf. Accessed 6 July 2018

  293. A. Groso, A. Petri-Fink, A. Magrez, M. Riediker, T. Meyer, Management of nanomaterials safety in research environment. Part. Fibre Toxicol. 7, 40 (2010). (8 pp)

    Article  Google Scholar 

  294. Y. Liu, Y. Zhao, B. Sun, C. Chen, Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46(3), 702–713 (2013)

    Article  CAS  Google Scholar 

  295. https://www.shponline.co.uk/shrinking-certainty/. Accessed 6 July 2018

  296. S. Bellucci, Carbon nanotubes toxicity, in Nanoparticles and Nanodevices in Biological Applications. Lecture Notes in Nanoscale Science and Technology, vol. XII, (Springer-Verlag, Berlin, Heidelberg, 2009), pp. 47–67

    Chapter  Google Scholar 

  297. W. Qi, L. Tian, W. An, et al., Curing the toxicity of multi-walled carbon nanotubes through native small-molecule drugs. Sci. Rep. 7, 2815 (2017)

    Article  CAS  Google Scholar 

  298. N. Kobayashi, H. Izumi, Y. Morimoto, Review of toxicity studies of carbon nanotubes. J. Occup. Health 59(5), 394–407 (2017)

    Article  Google Scholar 

  299. A. Jafar, Y. Alshatti, A. Ahmad, Carbon nanotube toxicity: the smallest biggest debate in medical care. Cogent Med. 3, 1217970 (2016)

    Article  Google Scholar 

  300. https://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf. Accessed 6 July 2018

  301. E. Oberdorster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environ. Health Perspect. 112(10), 1058–1062 (2004)

    Article  CAS  Google Scholar 

  302. G.V. Andrievsky, V.K. Klochkov, L.I. Derevyanchenko, Is C60 fullerene molecule toxic?! Fullerenes, Nanotubes, Carbon Nanostruct. 13(4), 363–376 (2005)

    Article  CAS  Google Scholar 

  303. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S.R. Wilson, F. Moussa, [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. Nano Lett. 5(12), 2578–2585 (2005)

    Article  CAS  Google Scholar 

  304. N. Shinohara, M. Gamo, J. Nakanishi, Fullerene C60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol. Sci. 123(2), 576–589 (2011)

    Article  CAS  Google Scholar 

  305. https://www.nanowerk.com/news/newsid=2373.php. Accessed 6 July 2018

  306. H. Aschberger, J. Johnston, V. Stone, et al., Review of fullerene toxicity and exposure – Appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 58(3), 455–473 (2010)

    Article  CAS  Google Scholar 

  307. J. Kolosnjaj, H. Szwarc, F. Moussa, Toxicity studies of fullerenes and derivatives, in Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, ed. by W. C. W. Chan, vol. 620 (Springer, New York, 2007)

    Chapter  Google Scholar 

  308. http://www.ipacom.com/index.php/en/full-and-water/about-the-non-toxicity-of-fullerenes. Accessed 6 July 2018

  309. G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. Nano LIFE 3, 1342003 (2013)

    Article  CAS  Google Scholar 

  310. D. Bradley, Is graphene safe? Mater. Today 15(6), 230 (2012)

    Article  Google Scholar 

  311. L. Ou, B. Song, H. Liang, et al., Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)

    Article  CAS  Google Scholar 

  312. M. Ema, M. Gamo, K. Honda, A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 85, 7–24 (2017)

    Article  CAS  Google Scholar 

  313. X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)

    Article  CAS  Google Scholar 

  314. A.B. Seabr, A.J. Paula, R. de Lima, O.L. Alves, N. Durán, Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)

    Article  CAS  Google Scholar 

  315. G. Lalwani, M. D’Agati, A. Mahmud Khan, B. Sitharaman, Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105(Pt B), 109–144 (2016)

    Article  CAS  Google Scholar 

  316. CDC – NIOSH Pocket Guide to Chemical Hazards – Graphite (natural). www.cdc.gov. Accessed 3 Nov 2015

  317. https://www.nwmissouri.edu/naturalsciences/sds/g/Graphite.pdf. Accessed 8 Aug 2018

  318. http://www.sciencelab.com/msds.php?msdsId=9924202. Accessed 8 Aug 2018

  319. E.D. Kuempel, T. Sorahan, Identification of research needs to resolve the carcinogenicity of high-priority IARC carcinogens. Views and Expert Opinions of an IARC/NORA Expert Group Meeting, Lyon, France, 30 June – 2 July 2009. IARC Technical Publication No. 42. Lyon, France. Int. Agency Res. Cancer 42, 61–72 (2010)

    Google Scholar 

  320. T. Sorahan, J.M. Harrington, A “lugged” analysis of lung cancer risks in UK carbon black production workers, 1951–2004. Am. J. Ind. Med. 50(8), 555–564 (2007)

    Article  Google Scholar 

  321. ICBA, Health and hygiene – what is carbon black? (2016), http://www.carbon-black.org/index.php/what-is-carbon-black/health-and-hygiene. Accessed 8 Aug 2018

  322. Flexicon, Carbon black (2018), https://www.flexicon.com/Materials-Handled/Carbon-Black.html. Accessed 8 Aug 2018

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Student Zone: Overview, Training, Practices, and Exercises. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_11

Download citation

Publish with us

Policies and ethics