Skip to main content

Applications and Cost-Benefit Data

  • Chapter
  • First Online:
  • 1190 Accesses

Abstract

According to the statistic reports, graphite prices were up 30–40% in the second half of 2017 due to an improving steel industry, environmental related production problems in China, and continued strong demand growth from the lithium-ion battery industry. Prices for large flake graphite are currently up to $1200/t from US$750 in 2017. This is still well below the 2012 peak of US$2800/t which was entirely due to the commodity super cycle and strong steel demand. With steel demand also recovering and production issues in China, the supply/demand picture for graphite is very favorable [1]. Graphite prices depend on two factors – flake size and purity. Large flake (+80 mesh) and high-carbon (+94%) varieties command the premium pricing segment [2]. Graphite is applied in the following products and processes, among others:

Image reproduced with permission of the Taylor and Francis (Critical Reviews in Solid State and Materials Sciences, 2016, 41(4), 257–317)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://northerngraphite.com/graphite-pricing/. Accessed 22 July 2018

  2. https://www.statista.com/statistics/452304/graphite-prices-worldwide-prediction-by-flake-grade/. Accessed 22 July 2018

  3. E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov, Graphite in science and nuclear technique. (2013). arXiv:1307.1869 [cond-mat.mtrl-sci]

    Google Scholar 

  4. http://www.olmec.co.uk/graphite_and_carbon_use_in_industrial_applications.htm. Accessed 16 Jan 2018

  5. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  6. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)

    Article  CAS  Google Scholar 

  7. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)

    Article  CAS  Google Scholar 

  8. A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)

    Article  CAS  Google Scholar 

  9. O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Influence of carbon black structure and specific surface area on the mechanical and dielectric properties of filled rubber composites. Int. J. Polym. Sci. 2011., Article ID 521985, 8 pp (2011)

    Google Scholar 

  10. http://www.asahicarbon.co.jp/global_site/product/cb/characteristic.html. Accessed 31 Oct 2017

  11. G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)

    Article  CAS  Google Scholar 

  12. https://www.sigmaaldrich.com. Accessed 22 July 2018

  13. C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)

    CAS  Google Scholar 

  14. J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceram. 10(2), 87–95 (2016)

    Article  Google Scholar 

  15. Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)

    Article  CAS  Google Scholar 

  16. Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)

    Article  CAS  Google Scholar 

  17. S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)

    Article  Google Scholar 

  18. C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. Chem. Phys. Chem. 18(22), 3219–3229 (2017)

    Article  CAS  Google Scholar 

  19. A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)

    Article  CAS  Google Scholar 

  20. V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)

    Article  Google Scholar 

  21. C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)

    Article  Google Scholar 

  22. N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)

    Article  CAS  Google Scholar 

  23. J. Myalski, B. Hekner, A. Posmyk. The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, 000121–000124 (2015)

    Article  Google Scholar 

  24. Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 042001 (2014)

    Google Scholar 

  25. M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)

    Article  CAS  Google Scholar 

  26. https://www.alfa.com/es/glassy-carbon/. Accessed 27 Oct 2017

  27. https://ssnano.com/home. Accessed 9 Aug 2018

  28. Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)

    Article  CAS  Google Scholar 

  29. V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)

    Article  CAS  Google Scholar 

  30. S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521

    Google Scholar 

  31. S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)

    Article  CAS  Google Scholar 

  32. P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)

    Article  CAS  Google Scholar 

  33. S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008

    Google Scholar 

  34. V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)

    Google Scholar 

  35. S.A. Zibrov, V.V. Vasil'ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362

    Google Scholar 

  36. D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)

    CAS  Google Scholar 

  37. J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)

    CAS  Google Scholar 

  38. M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants Explos. Pyrotech. 34(2), 166–173 (2009)

    Article  CAS  Google Scholar 

  39. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)

    Article  CAS  Google Scholar 

  40. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, and F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.org, e-Print Archive, Physics, 2009, 1–24, arXiv:0907.1148v1 [physics.optics]

  41. https://investingnews.com/daily/tech-investing/graphene-investing/graphene-cost. Accessed 9 Aug 2018

  42. https://www.graphenea.com/pages/graphene-price#.W2xs3NJKiUl. Accessed 9 Aug 2018

  43. P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)

    Article  CAS  Google Scholar 

  44. N.A. Koratkar, Graphene in composite materials: synthesis, characterization and applications (DEStech Publications, Inc., Lancaster, 2013), p. 198

    Google Scholar 

  45. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  46. X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)

    Article  CAS  Google Scholar 

  47. H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)

    Article  CAS  Google Scholar 

  48. B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)

    Article  CAS  Google Scholar 

  49. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)

    Article  CAS  Google Scholar 

  50. Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)

    Article  CAS  Google Scholar 

  51. J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)

    Article  CAS  Google Scholar 

  52. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  53. D.A. Areshkin, C.T. White, Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)

    Article  CAS  Google Scholar 

  54. H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, New York, 2012), pp. 586

    Google Scholar 

  55. X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)

    Article  CAS  Google Scholar 

  56. Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)

    Article  CAS  Google Scholar 

  57. Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)

    Article  CAS  Google Scholar 

  58. R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)

    Article  CAS  Google Scholar 

  59. P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)

    Article  CAS  Google Scholar 

  60. T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)

    Article  Google Scholar 

  61. N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)

    Article  CAS  Google Scholar 

  62. S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)

    Article  CAS  Google Scholar 

  63. M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)

    Article  CAS  Google Scholar 

  64. X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  CAS  Google Scholar 

  65. M.F. Bhopal, D.W. Lee, A. ur Rehman, S.H. Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)

    Article  CAS  Google Scholar 

  66. J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)

    Article  CAS  Google Scholar 

  67. N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)

    Article  CAS  Google Scholar 

  68. C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)

    Article  CAS  Google Scholar 

  69. H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)

    Article  CAS  Google Scholar 

  70. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007)

    Article  CAS  Google Scholar 

  71. C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

    Article  CAS  Google Scholar 

  72. S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)

    Article  CAS  Google Scholar 

  73. https://www.azonano.com/article.aspx?ArticleID=2885. Accessed 9 Aug 2018

  74. https://www.sigmaaldrich.com/catalog/product/aldrich/719781?lang=es&region=MX. Accessed 9 Aug 2018

  75. J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)

    Article  CAS  Google Scholar 

  76. B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)

    Article  CAS  Google Scholar 

  77. https://sites.google.com/site/cntcomposites/cost-and-production. Accessed 8 May 2017

  78. M. Bierdel, S. Buchholz, V. Michele, L. Mleczko, R. Rudolf, M. Voetz, A. Wolf, Industrial production of multiwalled carbon nanotubes. Phys. Stat. Sol. 244, 3939–3943 (2007)

    Article  CAS  Google Scholar 

  79. https://www.nanoamor.com. Accessed 9 Aug 2018

  80. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)

    Article  Google Scholar 

  81. O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, in Advances in Carbon Nanostructures, ed. by A.M.T. Silva, S.A.C. Carabineiro. Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers, (INTECH, London, UK, 2016)

    Google Scholar 

  82. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    Article  CAS  Google Scholar 

  83. M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)

    Article  CAS  Google Scholar 

  84. S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications. Nanomaterials 6, 58, 4 pp (2016)

    Article  Google Scholar 

  85. M. Durga Prakash, S.R.K. Vanjari, C.S. Sharma, S.G. Singh, Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors 16, 1354, 15 pp (2016)

    Article  CAS  Google Scholar 

  86. G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50 (2016). 39 pp

    Article  CAS  Google Scholar 

  87. X. Sun, Z. Gong, Y. Cao, X. Wang, Acetylcholiesterase biosensor based on poly(diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano-Micro Lett. 5(1), 47–56 (2013)

    Article  CAS  Google Scholar 

  88. B.C. Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci. Rep. 7, 40202 (2017)

    Article  CAS  Google Scholar 

  89. Z. Jiang, D. Chen, Y. Yu, J. Miao, Y. Liu, L. Zhang, Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv. 7, 2186–2192 (2017)

    Article  CAS  Google Scholar 

  90. J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng. 149, 94–99 (2016)

    Article  CAS  Google Scholar 

  91. T. Jarolim, M. Labaj, R. Hela, K. Michnova, Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics. Adv. Mater. Sci. Eng. 2016., Article ID 7508904, 6

    Google Scholar 

  92. M.G. Raucci, M. Alvarez-Perez, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 3(1), 13–23 (2016)

    Article  CAS  Google Scholar 

  93. Y. Dror, W. Salalha, W. Pyckhout-Hintzen, et al., From carbon nanotube dispersion to composite nanofibers. Progr. Colloid Polym. Sci. 130, 64–69 (2005)

    CAS  Google Scholar 

  94. J.-S. Kim, G.-W. Kim, Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors 17, 229 (2017). 12 pp

    Article  CAS  Google Scholar 

  95. S.-H. Park, J. Bae, Polymer composite containing carbon nanotubes and their applications. Rec. Patents Nanotechn. 11(2), 109–115 (2017)

    CAS  Google Scholar 

  96. S. Boukheir, A. Len, J. Füzi, V. Kenderesi, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134(8), 44514 (2017)

    Article  CAS  Google Scholar 

  97. M. Shigeta, K. Kamiya, M. Uejima, S. Okada, Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies. Jpn. J. Appl. Phys. 54, 035101 (2015)

    Article  CAS  Google Scholar 

  98. S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9, 220 (2016). 11 pp

    Article  CAS  Google Scholar 

  99. A. Mukherjee, S. Majumdar, A.D. Servin, L. Pagano, O.P. Dhankher, J.C. White, Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016). 16 pp

    Article  Google Scholar 

  100. B.D. Che, L.-T.T. Nguyen, B.Q. Nguyen, et al., Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22(11), 1221–1228 (2014)

    Article  CAS  Google Scholar 

  101. V.S.W. Chan, Nanomedicine: an unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46(3), 218–224 (2006)

    Article  CAS  Google Scholar 

  102. Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water- soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)

    Article  CAS  Google Scholar 

  103. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes 1758(3), 404–412 (2006)

    Article  CAS  Google Scholar 

  104. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)

    Article  CAS  Google Scholar 

  105. K. Fu, W. Huang, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. J. Nanosci. Nanotechn. 2(5), 457–461 (2002)

    Article  CAS  Google Scholar 

  106. L.W. Zhang, L. Zeng, A.R. Barron, N.A. Monteiro-Riviere, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicology 26(2), 103–113 (2007)

    Article  CAS  Google Scholar 

  107. X. Dong, Z. Sun, X. Wang, D. Zhu, L. Liu, X. Leng, Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 24(1), 143–151 (2017)

    Article  CAS  Google Scholar 

  108. S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)

    Article  CAS  Google Scholar 

  109. S. Sharma, N. Kumar Mehra, K. Jain, N. Kumar Jain, Effect of functionalization on drug delivery potential of carbon nanotubes. Art. Cells. Nanomed. Biotechn. 44(8), 1851–1860 (2016)

    Article  CAS  Google Scholar 

  110. P.S. Uttekar, A.M. Kulkarni, P.N. Sable, P.D. Chaudhari, Surface modification of carbon nano tubes with nystatin for drug delivery applications. Indian J. Pharm. Educ. Res. 50(3), 385–390 (2016)

    Article  CAS  Google Scholar 

  111. T. Ohta, Y. Hashida, F. Yamashita, M. Hashida, Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 105(9), 2815–2824 (2016)

    Article  CAS  Google Scholar 

  112. M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura, K. Taniguchi, Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent. Mater. J. 25(4), 719–725 (2006)

    Article  CAS  Google Scholar 

  113. C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, B.R. Weisman, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)

    Article  CAS  Google Scholar 

  114. R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Amer. Chem. Soc. 129, 8438–8439 (2007)

    Article  CAS  Google Scholar 

  115. Y. Hwang, S.-H. Park, J.W. Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 9, 13 (2017). 26 pp

    Article  CAS  Google Scholar 

  116. N.M. Bardhan, 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. (Annual issue: early career scholars in materials science). J. Mater. Res. 32(1), 107–127 (2017)

    Article  CAS  Google Scholar 

  117. E. Heister, E.W. Brunner, G.R. Dieckmann, I. Jurewicz, A.B. Dalton, Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 5(6), 1870–1891 (2013)

    Article  CAS  Google Scholar 

  118. I. Jesion, M. Skibniewski, E. Skibniewska, et al., Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering. Biotechnol. Biotechnol. Equip. 29(3), 415–422 (2015)

    Article  CAS  Google Scholar 

  119. R. Amezcua, A. Shirolkar, C. Fraze, D.A. Stout, Nanomaterials for cardiac myocyte tissue engineering. Nano 6, 133 (2016). 15 pp

    Google Scholar 

  120. J. Venkatesan, R. Ramjee Pallela, S.-K. Kim, Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10, 3105–3123 (2014)

    Article  CAS  Google Scholar 

  121. N. Burblies, J. Schulze, H.-C. Schwarz, Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS One 11(7), e0158571 (2016)

    Article  CAS  Google Scholar 

  122. J.L. Hernandez-Lopez, E.R. Alvizo-Paez, S.E. Moya, J. Ruiz-Garcia, Ordered carbon nanotube thin films produced by the trapping of water-soluble single-wall carbon nanotubes at the air/water interface. Carbon 45(12), 2448–2450 (2007)

    Article  CAS  Google Scholar 

  123. J. Li, Y. Zhang, Large-scale aligned carbon nanotubes films. Physica E 33(1), 235–239 (2006)

    Article  CAS  Google Scholar 

  124. M.A.H. Nawaz, S. Rauf, et al., One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16, 1651 (2016). 15 pp

    Article  CAS  Google Scholar 

  125. F. Li, B. Tang, J. Xiu, S. Shufen Zhang, Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 21, 547 (2016). 9 pp

    Article  CAS  Google Scholar 

  126. X. Meng, Y. Liu, M. Huang, J.-P. Cao, Flexible perfluoroalkoxy films filled with carbon nanotubes and their electric heating property. J. Appl. Polym. Sci. 134(18), 44782 (2017). 6 pp

    Article  CAS  Google Scholar 

  127. A. Almowarai, Y. Ueno, Y. Show, Fabrication of CNT dispersion fluid by wet-jet milling method for coating on bipolar plate of fuel cell. J. Nanomater., 7 (2015., Article ID 315017)

    Google Scholar 

  128. A.G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464, 368–372 (2004)

    Article  CAS  Google Scholar 

  129. K. Yu, Z. Zhu, M. Xu, Q. Li, W. Lu, Q. Chen, Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission. Surf. Coat. Technol. 179(1), 63–69 (2004)

    Article  CAS  Google Scholar 

  130. C. Hu, X. Chen, S. Hu, Water-soluble single-walled carbon nanotubes films: preparation, characterization and applications as electrochemical sensing films. J. Electroanalytical Chem. 586(1), 77–85 (2006)

    Article  CAS  Google Scholar 

  131. J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001 (2015). 20 pp

    Article  CAS  Google Scholar 

  132. S. Kumar, B.A. Cola, R. Jackson, S. Graham, A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. J. Electron. Packag. 133, 020906 (2011). 12 pp

    Article  CAS  Google Scholar 

  133. S. Lawes, A. Riese, Q. Sun, N. Cheng, X. Sun, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)

    Article  CAS  Google Scholar 

  134. M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, et al., Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 4(9), 1643–1647 (2004)

    Article  CAS  Google Scholar 

  135. G.S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C.R. Kagan, Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Amer. Chem. Soc. 129(39), 11964–11968 (2007)

    Article  CAS  Google Scholar 

  136. M.I.H. Panhuis, J. Wu, S.A. Ashraf, G.G. Wallace, Conducting textiles from single-walled carbon nanotubes. Synth. Met. 157(8), 358–362 (2007)

    Article  CAS  Google Scholar 

  137. X. Huang, R.K. Kobos, G. Xu, Hair coloring and cosmetic compositions comprising carbon nanotubes. US7276088 (2007)

    Google Scholar 

  138. A.J. Miller, R.A. Hatton, S.R.P. Silva, Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)

    Article  CAS  Google Scholar 

  139. H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19, 17329–17344 (2014)

    Article  CAS  Google Scholar 

  140. T. Grace, L.P. Yu, C. Gibson, et al., Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nano 6, 52 (2016). 13 pp

    Google Scholar 

  141. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 1758(3), 404–412 (2006)

    Article  CAS  Google Scholar 

  142. http://www.nano-lab.com/nanotubesuspensions.html. Accessed 8 May 2017

  143. http://www.nanoamor.com/carbon_nanotube_dispersions. Accessed 8 May 2017

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Applications and Cost-Benefit Data. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_10

Download citation

Publish with us

Policies and ethics