Skip to main content

A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

Abstract

The problem of high dimensionality is a challenge when facing machine learning tasks. A high dimensional space has a negative effect on the predictive performance of many methods, specifically, classification algorithms. There are different proposals that arise to mitigate the effects of this phenomenon. In this sense, models based on deep learning have emerged.

In this work, denoising autoencoders (DAEs) are used to reduce dimensionality. To verify its performance, an experimentation is carried out where the improvement obtained with different types of classifiers is verified. The classification method used are: kNN, SVM, C4.5 and MLP. The test for kNN and SVM show a better predictive performance for all datasets. The executions for C4.5 and MLP reflect improvements only in some cases. The execution time is lower for all tests. In addition, a comparison between DAEs and PCA, a classical method of dimensionality reduction, is performed, obtaining better results with DAEs in most cases. The conclusions reached open up new lines of future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  2. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)

    Google Scholar 

  3. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  5. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    Book  Google Scholar 

  6. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  7. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_15

    Chapter  Google Scholar 

  8. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018)

    Article  Google Scholar 

  9. Cole, R., Fanty, M.: Spoken letter recognition. In: Proceedings of the Workshop on Speech and Natural Language, pp. 385–390 (1990)

    Google Scholar 

  10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  11. Deng, L.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  12. Derrac, J., Chiclana, F., García, S., Herrera, F.: Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inf. Sci. 329, 144–163 (2016)

    Article  Google Scholar 

  13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (1973)

    MATH  Google Scholar 

  14. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)

    Article  Google Scholar 

  15. Ghosh, A.K.: On optimum choice of k in nearest neighbor classification. Comput. Stat. Data Anal. 50(11), 3113–3123 (2006)

    Article  MathSciNet  Google Scholar 

  16. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Proceedings of Neural Information Processing Systems, vol. 4, pp. 545–552 (2004)

    Google Scholar 

  17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  18. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  19. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  20. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417–441 (1933)

    Article  Google Scholar 

  21. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. SMC 15(4), 580–585 (1985)

    Article  Google Scholar 

  22. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  23. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  24. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  25. Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  26. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  27. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognit. 34(10), 2067–2070 (2001)

    Article  Google Scholar 

  28. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabilities are both unknown. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 204–213. ACM (2001)

    Google Scholar 

Download references

Acknowledgment

The work of F. Pulgar was supported by the Spanish Ministry of Education under the FPU National Program (Ref. FPU16/00324). This work was partially supported by the Spanish Ministry of Science and Technology under project TIN2015-68454-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Pulgar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pulgar, F.J., Charte, F., Rivera, A.J., del Jesus, M.J. (2018). A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics