Skip to main content

General Structure Preserving Network Embedding

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

  • 2364 Accesses

Abstract

Network embedding has attracted increasing attention in recent years since it represents large scale networks in low-dimensional space and provides an easier way to analysis networks. Existing embedding methods either focus on preserving the microscopic topology structure, or incorporate the mesoscopic community structure of a network. However, in the real world, a network may not only contain community structure, but have bipartite-structure, star-structure or other general structures, where nodes in each cluster have similar patterns of connections to other nodes. Empirically, general structure is important for describing the features of networks. In this paper, based on nonnegative matrix factorization framework, we propose GS-NMF which is capable of integrating topology structure and general structure into embedding process. The experimental results show that GS-NMF overcomes the limitation of previous methods and achieves obvious improvement on node clustering, node classification, and visualization.

Supported by the National Nature Science Foundation of China No. 61473030 and No. 61632004, the Fundamental Research Funds for the Central University No. 2017JBM023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.orgnet.com.

  2. 2.

    http://linqs.cs.umd.edu/projects/projects/lbc/.

References

  1. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000)

    Article  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia, pp. 891–900 (2015)

    Google Scholar 

  4. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Arizona, USA, pp. 1145–1152 (2016)

    Google Scholar 

  5. Davis, A., Gardner, B.B., Gardner, M.R.: Deep south: a social anthropological study of caste and class. Am. J. Sociol. 48(3), 432–433 (1941)

    Google Scholar 

  6. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Nova Scotia, Canada, pp. 135–144 (2017)

    Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 855–864 (2016)

    Google Scholar 

  8. Guan, N.Y., Tao, D.C., Luo, Z.G., Yuan, B.: Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Netw. 23(7), 1087–1099 (2012)

    Article  Google Scholar 

  9. Hu, Y., Li, M., Zhang, P., Fan, Y., Di, Z.: Community detection by signaling on complex networks. Phys. Rev. E 78(1), 016115 (2008)

    Article  Google Scholar 

  10. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, UK, pp. 731–739 (2017)

    Google Scholar 

  11. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM (1993)

    Google Scholar 

  12. Lee, D.D.: Algorithms for nonnegative matrix factorization. Adv. Neural Inf. Process. Syst. 13(6), 556–562 (2000)

    Google Scholar 

  13. Li, Y., Jia, C., Yu, J.: A parameter-free community detection method based on centrality and dispersion of nodes in complex networks. Phys. A-Stat. Mech. Appl. 438, 321–334 (2015)

    Article  Google Scholar 

  14. Lim, K.W., Buntine, W.L.: Bibliographic analysis with the citation network topic model. In: Asian Conference on Machine Learning, pp. 142–158 (2016)

    Google Scholar 

  15. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3(2), 127–163 (2000)

    Google Scholar 

  16. MaatenA, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  18. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  20. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA , pp. 1105–1114 (2016)

    Google Scholar 

  21. Pei, Y., Chakraborty, N., Sycara, K.: Nonnegative matrix tri-factorization with graph regularization for community detection in social networks. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, pp. 2083–2089 (2015)

    Google Scholar 

  22. Perozzi, B., Alrfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 701–710 (2014)

    Google Scholar 

  23. Roberts, L.G., Wessler, B.D.: Computer network development to achieve resource sharing. In: Proceedings of the Spring Joint Computer Conference, 5–7 May 1970, New Jersey, USA, pp. 543–549 (1970)

    Google Scholar 

  24. Shen, H., Cheng, X., Guo, J.: Exploring the structural regularities in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(5), 056111 (2011)

    Article  Google Scholar 

  25. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, pp. 1067–1077 (2015)

    Google Scholar 

  26. Tu, C., Liu, H., Liu, Z., Sun, M.: Cane: context-aware network embedding for relation modeling. In: The 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, vol. 1, pp. 1722–1731 (2017)

    Google Scholar 

  27. Tu, C., Zhang, Z., Liu, Z., Sun, M.: Translation-based network representation learning for social relation extraction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 2864–2870 (2017)

    Google Scholar 

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 1225–1234 (2016)

    Google Scholar 

  29. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: The AAAI Conference on Artificial Intelligence, California, USA, pp. 203–209 (2017)

    Google Scholar 

  30. Xuan, G., Shi, Y.Q., Chai, P., Sutthiwan, P.: An enhanced EM algorithm using maximum entropy distribution as initial condition. In: International Conference on Pattern Recognition, Tsukuba Science City, Japan, pp. 849–852 (2012)

    Google Scholar 

  31. Yang, C., Sun, M., Liu, Z., Tu, C.: Fast network embedding enhancement via high order proximity approximation. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, 19–25 August 2017, Melbourne, Australia, pp. 19–25 (2017)

    Google Scholar 

  32. Yang, C., Zhao, D., Chang, E.Y.: Network representation learning with rich text information. In: International Conference on Artificial Intelligence, Buenos Aires, Argentina, pp. 2111–2117 (2015)

    Google Scholar 

  33. Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community detection: a discriminative approach. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, pp. 927–936 (2009)

    Google Scholar 

  34. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  35. Zhang, D.K., Yin, J., Zhu, X.Q., Zhang, C.Q.: Collective classification via discriminative matrix factorization on sparsely labeled networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, USA, pp. 1563–1572 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sinan Zhu or Caiyan Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S., Jia, C. (2018). General Structure Preserving Network Embedding. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics