Skip to main content

Characterization of the Quasicoherent Oscillations in the Plasma Potential

  • Chapter
  • First Online:
  • 490 Accesses

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

Abstract

In this chapter we discuss the variable component of the plasma potential and associated radial electric field observed in the T-10 tokamak and TJ-II stellarator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diamond, P.H., Itoh, S.-I., Itoh, K., Hahm, T.S.: Zonal flows in plasma–a review. Plasma Phys. Control. Fusion 47, R35 (2005)

    Article  Google Scholar 

  2. Winsor, N., Johnson, J.L., Dawson, J.M.: Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11, 2448 (1968)

    Article  ADS  Google Scholar 

  3. McKee, G.R., Fonck, R.J., Jakubowski, M., et al.: Observation and characterization of radially sheared zonal flows in DIII-D. Plasma Phys. Control. Fusion 45, A477 (2003)

    Article  ADS  Google Scholar 

  4. Nazikian, R., et al.: Measurement of turbulence decorrelation during transport barrier evolution in a high-temperature fusion plasma. Phys. Rev. Lett. 94, 135002 (2005)

    Article  ADS  Google Scholar 

  5. Wagner, F.: A quarter-century of H-mode studies. Plasma Phys. Control. Fusion 49, B1 (2007)

    Article  ADS  Google Scholar 

  6. Fujisawa, A., Itoh, K., Iguchi, H., et al.: Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett. 93, 165002 (2004)

    Article  ADS  Google Scholar 

  7. Hamada, Y., Nishizawa, A., Ido, T., et al.: Zonal flows in the geodesic acoustic mode frequency range in the JIPP T-IIU tokamak plasmas. Nucl. Fusion 45, 81 (2005)

    Article  ADS  Google Scholar 

  8. Hamada, Y., Watari, T., Nishizawa, A., et al.: Regions of kinetic geodesic acoustic modes and streamers in JIPPT-IIU tokamak plasmas. Nucl. Fusion 52, 063023 (2012)

    Article  ADS  Google Scholar 

  9. Ido, T., et al.: Geodesic–acoustic-mode in JFT-2M tokamak plasmas. Plasma Phys. Control. Fusion 48, S41 (2006)

    Article  Google Scholar 

  10. Cziegler, I., et al.: Nonlinear transfer in heated L-modes approaching the L-H transition threshold in Alcator C-Mod. Nucl. Fusion 55, 083007 (2015)

    Article  ADS  Google Scholar 

  11. Convay, C.D., Scott, B., Schirmer, J., et al.: Direct measurement of zonal flows and geodesic acoustic mode oscillations in ASDEX Upgrade using Doppler reflectometry. Plasma Phys. Control. Fusion 47, 1165 (2005)

    Article  ADS  Google Scholar 

  12. Cheng, J., Yan, L.W., Zhao, K.J., et al.: Density fluctuation of geodesic acoustic mode on the HL-2A tokamak. Nucl. Fusion 49, 085030 (2009)

    Article  ADS  Google Scholar 

  13. Yan, N., et al.: Statistical characterization of turbulence in the boundary plasma of EAST. Plasma Phys. Control. Fusion 55, 115007 (2013)

    Article  ADS  Google Scholar 

  14. Silva C., Figueiredo H., Nedzelskij I., et al.: Structure of the ISTTOK edge plasma fluctuations. In: 35th EPS Conference on Plasma Physics. Hersonissos, ECA, 32D, P-1.021 (2008). http://epsppd.epfl.ch/Hersonissos/pdf/P1_021.pdf

  15. Van Oost, G., Gomes, R.B., Gryaznevich, M., et al.: Overview of results from the IAEA-CRP In: 3rd International Joint Experiment on the tokamak ISTTOK. 35th EPS Conference on Plasma Physics. Hersonissos, ECA, 32D, P-2.040 (2008). http://epsppd.epfl.ch/Hersonissos/pdf/P2_040.pdf

  16. Seidl, J., Krbec, J., Hron, M., Adamek, J., Hidalgo, C., et al.: Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak. Nucl. Fusion 57, 126048 (2017)

    Article  ADS  Google Scholar 

  17. Basu, D., Nakajima, M., Melnikov, A.V., et al.: Geodesic acoustic mode (GAM) like oscillations of ion saturation current signal and RMP effect in STOR-M tokamak. Nucl. Fusion 58, 024001 (2018)

    Article  ADS  Google Scholar 

  18. Kraemer-Flecken, A., Soldatov, S., Shelukhin, D.A., et al.: Geodesic acoustic mode in the vicinity of rational surfaces at TEXTOR. In: 34th EPS Conference on Plasma Physics, Warsaw, ECA 31F, P-1.068 (2007). http://epsppd.epfl.ch/Warsaw/pdf/P1_068.pdf

  19. Xu, Y., Shesterikov, I., Van Schoor, M., et al.: Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of the TEXTOR tokamak. Plasma Phys. Control. Fusion 53, 095015 (2011)

    Article  ADS  Google Scholar 

  20. Melnikov, A.V., et al.: Investigation of geodesic acoustic mode oscillations in the T-10 tokamak. Plasma Phys. Control. Fusion 48, S87 (2006)

    Article  Google Scholar 

  21. Askinazi, L.G., et al.: Fusion Research in Ioffe Institute. Nucl. Fusion 55, 104013 (2015)

    Article  ADS  Google Scholar 

  22. Gurchenko, A.D., et al.: Spatial structure of the geodesic acoustic mode in the FT-2 tokamak by upper hybrid resonance Doppler backscattering. Plasma Phys. Control. Fusion 55, 085017 (2013)

    Article  ADS  Google Scholar 

  23. Yashin, A.Y., et al.: Geodesic acoustic mode observations in the Globus-M spherical tokamak. Nucl. Fusion 54, 114015 (2014)

    Article  ADS  Google Scholar 

  24. De Mejere, C.A., et al.: Complete multi-field characterization of the geodesic acoustic mode in the TCV tokamak. Plasma Phys. Control. Fusion 56, 072001 (2014)

    Article  ADS  Google Scholar 

  25. Fujisawa, A., Ido, T., Shimizu, A., et al.: Experimental progress on zonal flow physics in toroidal plasmas. Nucl. Fusion 47, S718 (2007)

    Article  Google Scholar 

  26. Tsui, H.Y.W., Schoch, P.M., Wotton, A.J.: Observation of quasicoherent mode in the Texas Experimental Tokamak. Phys. Fluids B 5, 1274 (1993)

    Article  ADS  Google Scholar 

  27. Vershkov, V.A., Dreval, V.V., Soldatov, S.V.: T-10 plasma investigations with new 3-wave heterodyne O-mode reflectometer. In: 21st EPS Conference on Controlled Fusion Plasma Physics, Montpellier, ECA, 18B, part 3, 1192 (1994)

    Google Scholar 

  28. Soldatov, S.V., Bagdasarov, A.A., Chistiakov, V.V., et al.: Investigation of plasma oscillations in regimes with m = 2, 3 instabilities in T-10 tokamak. In: 24th EPS Conference on Controlled Fusion and Plasma Physics, Berhtesgaden, Germany, ECA, 21A, part 2, 673 (1997)

    Google Scholar 

  29. Melnikov, A.V., Eliseev, L.G., Grashin, S.A., et al.: Observation of the specific oscillations with frequencies near 20 kHz by HIBP, reflectometry and Langmuir probes in T-10. In: 30th EPS Conference on Controlled Fusion Plasma Physics. St. Petersburg, ECA, 27A, P-3.114 (2003). http://epsppd.epfl.ch/StPetersburg/PDF/P3_114.PDF

  30. Schoch, P.M., Connor, K.A., Demers, D.R., Zhang, X.: Zonal flow measurements using a heavy ion beam probe. Rev. Sci. Instrum. 74, 1846 (2003)

    Article  ADS  Google Scholar 

  31. Melnikov, A.V., Eliseev, L.G., Gudozhnik, A.V., et al.: Investigation of the plasma potential oscillations in the range of geodesic acoustic mode frequencies by heavy ion beam probing in tokamaks. Czech J. Phys. 55, 349 (2005)

    Article  ADS  Google Scholar 

  32. Vershkov, V.A., Shelukhin, D.A., Soldatov, S.V., et al.: Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas. Nucl. Fusion 45, S203 (2005)

    Article  Google Scholar 

  33. Van Oost, G., Gryaznevich, M., Del Bosco, E., et al.: Joint Experiments on the tokamaks CASTOR and T-10. AIP Conf. Proc. 996, 24 (2008)

    Article  ADS  Google Scholar 

  34. Vershkov, V.A., Soldatov, S.V., Shelukhin, D.A., Chistiakov, V.V.: Experimental investigation of ion-temperature-gradient-like turbulence characteristics in T-10 core plasmas with toroidal and poloidal correlation reflectometer. Nucl. Fusion 39, 1775 (1999)

    Article  ADS  Google Scholar 

  35. Vershkov, V.A., Grashin, S.A., Dreval, V.V., et al.: Radial distributions and poloidal asymmetries of T-10 SOL parameters and turbulence. J. Nucl. Mater. 241–243, 873 (1997)

    Article  ADS  Google Scholar 

  36. Vershkov, V.A., Shelukhin, D.A., Soldatov, S.V., Chistiakov, V.V.: Investigation of core turbulence characteristics in different regimes in T-10 by means of correlation reflectometry. In: 28th EPS Conference on Controlled Fusion Plasma Physics, Madeira, Portugal, ECA, 25A, 1413 (2001). http://epsppd.epfl.ch/Madeira/html/xref/P3.098.html

  37. Vershkov, V.A., Dreval, V.V., Soldatov, S.V.: A three-wave heterodyne correlation reflectometer developed in the T-10 tokamak. Rev. Sci. Instrum. 70, 1700 (1999)

    Article  ADS  Google Scholar 

  38. Vershkov, V.A., Shelukhin, D.A., Melnikov, A.V., et al.: Poloidal and toroidal structure of the density fluctuations in tokamak T-10. In: 34th EPS Conference on Plasma Physics, Warsaw, ECA, 31F, P1.075 (2007). http://epsppd.epfl.ch/Warsaw/pdf/P1_075.pdf

  39. Melnikov, A.V., Eliseev, L.G, Vershkov, V.A., et al.: Study of the geodesic acoustic induced modes in T-10 tokamak. In: 37th EPS Conference on Plasma Physics. Dublin, Ireland, ECA, 34A, P1.056 (2010). http://ocs.ciemat.es/EPS2010PAP/html/

  40. Melnikov, A.V., Eliseev, L.G, Perfilov, S.V., et al.: Study of correlation properties of geodesic acoustic modes in the T-10 tokamak. In: Proceedings of 17th IAEA Techn. Meeting Research Using Small Fusion Devices, Lisbon, Portugal (RUSFD-17) OT 12 (2007).

    Google Scholar 

  41. Liewer, P.C.: Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport. Nucl. Fusion 25, 543 (1985)

    Article  Google Scholar 

  42. Vershkov, V.A., et al.: Experimental investigation of ion-temperature-gradient-like turbulence characteristics in T-10 core plasmas with toroidal and poloidal correlation reflectometer. Nucl. Fusion 39, 1775 (1999)

    Article  ADS  Google Scholar 

  43. Melnikov, A.V., Eliseev, L.G, Perfilov, S.V., et al.: Investigation of the statistical properties of electric potential oscillations in the T-10 tokamak. EFTSOMP2008, Workshop on Electric Fields, Turbulence and Self-Organisation in Magnetized Plasmas. In: Satellite Meeting of the 35th EPS Conference on Plasma Physics and Controlled Fusion, Hersonissos, Crete (2008). http://www.rmki.kfki.hu/~eftsomp2008

  44. Eliseev, L.G., Melnikov, A.V., Perfilov, S.V., et al.: Two point correlation technique for the measurements of poloidal plasma rotation by heavy ion beam probe. Plasma Fusion Res. 7, 2402064 (2012)

    Article  ADS  Google Scholar 

  45. Zenin, V.N., Eliseev, L.G., Kozachek, A.S., et al.: Study of poloidal structure of geodesic acoustic modes in the T-10 tokamak with heavy ion beam probing. Probl. Atomic Sci. Techn. Series Plasma Phys. 20, 269 (2014)

    Google Scholar 

  46. Melnikov, A.V., Eliseev, L.G, Perfilov, S.V., et al.: The study of GAM properties in the T-10 tokamak. In: 34th EPS Conference on Control. Fusion Plasma Physics. Warsaw, ECA, 31F, P1.096 (2007). http://epsppd.epfl.ch/Warsaw/pdf/P1_096.pdf

  47. Vidakovič, B., Müller, P.: Wavelet for kids. http://bookfi.net/book/466144

  48. Melnikov, A.V. Eliseev, L.G., Lysenko, S.E., et al.: Correlation Properties of Geodesic Acoustic Modes in the T-10 Tokamak. J. Phys. Conf. Series 591, 012003 (2015)

    Google Scholar 

  49. Ramisch, M., Stroth, U., Niedner, S., Scott, B.: On the detection of Reynolds stress as a driving and damping mechanism of geodesic acoustic modes and zonal flows. New J. Phys. 5, 12 (2003)

    Article  ADS  Google Scholar 

  50. Melnikov, A.V. Eliseev, L.G., Lysenko, S.E., et al.: Long-distance correlations of geodesic acoustic modes in T-10. Probl. Atomic Sci. Techn. Ser. Thermonuclear Fusion 38, 49 (2015). (in Russian). http://vant.iterru.ru/vant_2015_1/8.pdf

  51. Vershkov, V.A., et al.: Density fluctuations as an intrinsic mechanism of pressure profile formation. Nucl. Fusion 55, 063014 (2015)

    Article  ADS  Google Scholar 

  52. Melnikov, A.V., et al.: Study of interactions between GAMs and broadband turbulence in the T-10 tokamak. Nucl. Fusion 57, 115001 (2017)

    Article  ADS  Google Scholar 

  53. van Milligen, B.Ph., et al.: Spatiotemporal and wavenumber resolved bicoherence at the low to high confinement transition in the TJ-II stellarator. Nucl. Fusion 53, 113034 (2013)

    Google Scholar 

  54. Kirneva, N.A., Martynov, A.A., Pavlov Yu.D., et al.: Empirical formula for plasma electron temperature profile in T-10 ohmic discharges. Probl. Atom. Sci. Techn. Ser. Thermonuclear Fusion 37, 56 (2014). (in Russian). http://vant.iterru.ru/vant_2014_1/8.pdf

  55. Klyuchnikov, L., et al.: Charge exchange recombination spectroscopy on the T-10 tokamak. Rev. Sci. Instrum. 87, 053506 (2016)

    Article  Google Scholar 

  56. Melnikov, A.V., Eliseev, L.G., Lysenko, S.E., et al.: Radial homogeneity of geodesic acoustic modes in ohmic discharges with low B in the T-10 tokamak. JETP Lett. 100, 555 (2014)

    Article  ADS  Google Scholar 

  57. Melnikov, A.V., Eliseev, L.G., Perfilov, S.V., et al.: The features of the global GAM in OH and ECRH plasmas in the T-10 tokamak. Nucl. Fusion 55, 063001 (2015)

    Article  ADS  Google Scholar 

  58. Shatz, M.G., Solomon, W.M.: Experimental evidence of self-regulation by time-varying flows. Phys. Rev. Lett. 88, 045001 (2002)

    Article  ADS  Google Scholar 

  59. Melnikov, A.V., Eliseev, L.G, Gudozhnik, A.V., et al.: Investigation of the plasma potential oscillations in the range of geodesic acoustic mode frequencies by heavy ion beam probing in tokamaks. In: 12th International of Congress Plasma Physics. Nice (2004)

    Google Scholar 

  60. Askinazi, L.G., Kornev, V.A., Krikunov, S.V., et al.: Plasma potential evolution in various operational modes in the TUMAN-3M tokamak. In: 34th EPS Conference on Plasma Physics. Warsaw, ECA, 31F, P5.092 (2007). http://epsppd.epfl.ch/Warsaw/pdf/P5_092.pdf

  61. Storelli, A., Vermare, L., Hennequin, P., et al.: Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations. Phys. Plasmas 22, 062508 (2015)

    Article  ADS  Google Scholar 

  62. Bulanin, V.V., Askinazi, L.G., Belokurov, A.A., et al.: GAM observation in the TUMAN-3 M tokamak. Plasma Phys. Control. Fusion 58, 045006 (2016)

    Article  ADS  Google Scholar 

  63. Chen, W., Ding, X.T., Yu, L.M., et al.: Observation of energetic-particle-induced GAM and nonlinear interactions between EGAM, BAEs and tearing modes on the HL-2A tokamak. Nucl. Fusion 53, 113010 (2013)

    Article  ADS  Google Scholar 

  64. Conway, G.D., Tröster, C., Scott, B., et al.: Frequency scaling and localization of geodesic acoustic modes in ASDEX Upgrade. Plasma Phys. Control. Fusion 50, 055009 (2008)

    Article  ADS  Google Scholar 

  65. Bulanin, V.V., Wagner, F., Varfolomeev, V.I., et al.: Observation of geodesic acoustic modes in the Globus-M spherical tokamak. Techn. Phys. Lett. 40, 375 (2014)

    Article  ADS  Google Scholar 

  66. Huang, Z., Coda S., and de Meijere, C.A. Investigation of plasma turbulence and geodesic acoustic modes using tangential phase-contrast imaging in the TCV tokamak. In: 41st EPS Conference on Plasma Physics, Berlin, ECA 38F P5.071 (2014). http://ocs.ciemat.es/EPS2014PAP/pdf/P5.071.pdf

  67. Yan, Z., Mckee, G.R., Boedo, J.A., et al.: Relating the L-H power threshold scaling to edge turbulence dynamics. Nucl. Fusion 53, 113038 (2013)

    Article  ADS  Google Scholar 

  68. Heidbrink, W.W., Ruskov, E., Carolipio, E.M., et al.: What is the “beta-induced Alfvén eigenmode?” Phys. Plasmas 6, 1147 (1999)

    Article  ADS  Google Scholar 

  69. Lakhin, V.P., Sorokina, E.A.: Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency. Phys. Lett. A 378, 535 (2014)

    Article  ADS  MATH  Google Scholar 

  70. Ilgisonis, V.I., et al.: Global geodesic acoustic mode in a tokamak with positive magnetic shear and a monotonic temperature profile. Plasma Phys. Control. Fusion 56, 035001 (2014)

    Article  ADS  Google Scholar 

  71. Heidbrink, W.W.: Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008)

    Article  ADS  Google Scholar 

  72. Weller, A., Anton, M., Geiger, J., et al.: Survey of magnetohydrodynamic instabilities in the advanced stellerator Wendelstein 7-AS. Phys. Plasmas 8, 931 (2001)

    Article  ADS  Google Scholar 

  73. Toi, K., Takechi, M., Isobe, M., et al.: Energetic ion driven MHD instabilities observed in heliotron/torsatron devices Compact Helical System and Large Helical Device. Nucl. Fusion 40, 1349 (2000)

    Article  ADS  Google Scholar 

  74. Ido, T., Shimizu, A., Nishiura, M., et al.: Measurement of electrostatic potential fluctuation using heavy ion beam probe in large helical device. Rev. Sci. Instrum. 79, 10F318 (2008)

    Article  Google Scholar 

  75. Jiménez-Gómez, R., Könies, A., Ascasíbar, E., et al.: Alfvén eigenmodes measured in the TJ-II stellarator. Nucl. Fusion 51, 033001 (2011)

    Article  ADS  Google Scholar 

  76. Melnikov, A.V., Eliseev, L.G., Jiménez-Gómez, R., et al.: Study of Alfvén Eigenmodes in the TJ-II stellarator. Plasma Fusion Res. 5, S2019 (2010)

    Article  Google Scholar 

  77. Eliseev, L.G., Melnikov, A.V., Jiménez-Gómez, R., et al.: Alfvén Eigenmodes Properties and Dynamics in the TJ-II Stellarator. In: 23rd IAEA Fusion Energy Conference on Daejeon, Korea, EXW/P7-17 (2010). http://www-pub.iaea.org/MTCD/meetings/PDFplus/2010/cn180/cn180_papers/exw_p7-17.pdf

  78. Melnikov, A.V., Eliseev, L.G., Jiménez-Gómez, R., et al.: Internal measurements of Alfvén eigenmodes with heavy ion beam probing in toroidal plasmas. Nucl. Fusion 50, 084023 (2010)

    Google Scholar 

  79. Donné, A.J.H., Melnikov, A.V., Van Oost, G.: Diagnostics for radial electric field measurements in hot magnetized plasmas. Czech J. Phys. 55, 1077 (2002)

    Article  ADS  Google Scholar 

  80. Dnestrovskij, Yu. N., Melnikov, A.V., Krupnik, L.I., Nedzelskij, I.S.: Development of heavy ion beam probe diagnostics. IEEE Trans. Plasma Sci. 22, 310 (1994)

    Article  ADS  Google Scholar 

  81. Melnikov, A.V., Eliseev, L.G, Krupnik, L.I., et al.: Turbulence and Plasma Potential Evolution Study by HIBP Diagnostic during L-H Transition in the TJ-II Stellarator. In: 36th EPS Conference on Plasma Physics, Sofia, P-4.186 (2009). http://epsppd.epfl.ch/Sofia/pdf/P4_186.pdf

  82. Wesson, J.: Tokamaks. Clarendon Press-Oxford (2004)

    Google Scholar 

  83. Powers, E.J.: Spectral techniques for experimental investigation of plasma diffusion due polychromatic fluctuations. Nucl. Fusion 14, 749 (1974)

    Article  Google Scholar 

  84. Melnikov, A.V., Eliseev, L.G., Ascasibar, E., et al.: Alfvén eigenmode properties and dynamics in the TJ-II stellarator. Nucl. Fusion 52, 123004 (2012)

    Google Scholar 

  85. Melnikov, A.V., Eliseev, L.G., Alonso, A., et al.: Plasma potential profiles and oscillations in ECRH and NBI plasmas in the TJ-II stellarator. In: 37th EPS Conference on Plasma Physics. Dublin, P1.066 (2010). http://ocs.ciemat.es/EPS2010PAP/pdf/P1.066.pdf

  86. Spong, D.A., D’Azevedo, E., Todo, Y.: Clustered frequency analysis of shear Alfvén modes in stellarators. Phys. Plasmas 17, 022106 (2010)

    Article  ADS  Google Scholar 

  87. Spong, D.A., Sanchez, R., Weller, A.: Shear Alfvén continua in stellarators. Phys. Plasmas 10, 3217 (2003)

    Article  ADS  Google Scholar 

  88. Melnikov, A.V., Ochando, M., Ascasibar, E., et al.: Effect of magnetic configuration on frequency of NBI-driven Alfvén modes in TJ-II. Nucl. Fusion 54, 123002 (2014)

    Article  ADS  Google Scholar 

  89. Lopez-Bruna, D., Castejon, F., Estrada, T., et al.: Effects of Ohmic current in the TJ-II stellarator. Nucl. Fusion 44, 645 (2004)

    Article  ADS  Google Scholar 

  90. Garcia-Munoz M., et al.: Impact of localized ECRH on NBI driven Alfvén eigenmodes in the ASDEX Upgrade tokamak. In: Proceedings 42nd EPS Conference on Plasma Physics, Lisbon, 22–26 June 2015, P1.148. http://ocs.ciemat.es/EPS2015PAP/html/

  91. Berk, H.L., et al.: Explanation of the JET n = 0 chirping mode. Nucl. Fusion 46, S888 (2006)

    Article  Google Scholar 

  92. Jiménez-Gómez, R., et al.: Alfvén eigenmodes in the TJ-II stellarator. Nucl. Fusion 51, 033001 (2011)

    Article  ADS  Google Scholar 

  93. Gryaznevich, M.P., et al.: Recent experiments on Alfvén eigenmodes in MAST. Nucl. Fusion 48, 084003 (2008)

    Article  ADS  Google Scholar 

  94. Cappa, A., et al.: Influence of ECR heating on NBI-Driven Alfvén eigenmodes in the TJ-II stellarator. In: Proceedings of 25th International Conference on Fusion Energy, EX/P4-46 (San Petersburg, Russia, 2015). www-naweb.iaea.org/napc/physics/FEC/FEC2014/fec2014-preprints/231_EXP446.pdf

  95. Melnikov, A.V., et al.: Transition from chirping to steady NBI-driven Alfvén modes caused by magnetic configuration variations in the TJ-II stellarator. Nucl. Fusion 56, 076001 (2016)

    Article  ADS  Google Scholar 

  96. Castejón, F., et al.: Iota scaling and neoclassical confinement in the TJ-II stellarator. Fusion Sci. Technol. 70, 406 (2016)

    Article  Google Scholar 

  97. Castejón, F., et al.: 3D effects on transport and plasma control in the TJ-II stellarator. Nucl. Fusion 57, 102022 (2017)

    Article  ADS  Google Scholar 

  98. Valovic, M., Lloyd, B., McClements, K.G., et al.: Quasi-stationary high β plasmas and fast particle instabilities in the COMPASS-D tokamak with ECRH and LHCD. Nucl. Fusion 40, 1569 (2000)

    Article  ADS  Google Scholar 

  99. Deng, C.B., Brower, D.L., Breizman, B.N., et al.: Energetic-electron-driven instability in the helically symmetric experiment. Phys. Rev. Lett. 103, 025003 (2009)

    Article  ADS  Google Scholar 

  100. Isobe, M., Toi, K., Yoshimura, Y., et al.: Energetic-particle modes driven by suprathermal electrons produced by off-axis second harmonic ECRH in compact helical system (CHS). Nucl. Fusion 50, 084007 (2010)

    Article  ADS  Google Scholar 

  101. Wong, K.L., Chu, M.S., Luce, T.C., et al.: Internal kink instability during off-axis electron cyclotron current drive in the DIII-D tokamak. Phys. Rev. Lett. 85, 996 (2000)

    Article  ADS  Google Scholar 

  102. Ochando, M.A., et al.: Up-down and in-out asymmetry monitoring based on broadband radiation detectors. Fusion Sci. Technol. 50, 313 (2006)

    Article  Google Scholar 

  103. Ochando, M.A., Medina, F.: Emissivity toroidal asymmetries induced by ECRH driven convective fluxes in the TJ-II stellarator. Plasma Phys. Control. Fusion 45, 221 (2003)

    Article  ADS  Google Scholar 

  104. Rodríguez-Rodrigo, L., Medina, F., Ochando, M.A.: Generation of fast electrons in TJ-II. In: 26th EPS Conference on Controlled Fusion Plasma Physics, Maastricht, ECA, 23J, 353 (1999). http://epsppd.epfl.ch/Maas/web/pdf/p1062.pdf

  105. Nagaoka, K., Yamamoto, S., Ohshima, S., et al.: MHD instability driven by supra-thermal electrons in TJ-II stellarator. In: 12th IAEA-TCM on Energetic Particles. Texas, Austin, USA, P 2.5 (2011). http://w3Fusionph.utexas.edu/ifs/iaeaep/papers/nagaoka-kenichi-ep-p2-5-paper.pdf

  106. Medina, F., Ochando, M.A., Krupnik, L., et al.: Electron distribution function and radial electric fields in the TJ-II stellarator. In: 31st EPS Conference on Plasma Physics, London, ECA, 28G, P-4.182 (2004). http://epsppd.epfl.ch/London/pdf/P4_182.pdf

  107. Melnikov, A.V., Eliseev, L.G., Alonso, A., et al.: Plasma potential profiles and oscillations in ECRH and NBI plasmas in the TJ-II stellarator. In: 37th EPS Conference on Plasma Physics, Dublin, Ireland, ECA, 34A, P-1.066 (2010). http://ocs.ciemat.es/EPS2010PAP/pdf/P1.066.pdf

  108. Krupnik L.I., Chmyga A.A., Eliseev L.G et al. Characterization of the quasi-coherent oscillations by HIBP diagnostics in the TJ-II stellarator. In: 33rd EPS Conference on Plasma Physics. Rome, ECA, 30I. P-1.138 (2006). http://epsppd.epfl.ch/Roma/pdf/P1_138.pdf

  109. Krupnik, L., Melnikov, A., Hidalgo, C., et al.: Quasi-coherent oscillations in the TJ-II stellarator. AIP Conf. Proc. 875, 9 (2006)

    Google Scholar 

  110. Estrada, T., Alonso, A., Chmyga, A., et al.: Electron internal transport barriers, rationals and quasi-coherent oscillations in the stellarator TJ-II. Plasma Phys. Control. Fusion 47, L57 (2005)

    Article  Google Scholar 

  111. Pedrosa, M.A., et al.: Evidence of long-distance correlation of fluctuations during edge transitions to improved-confinement regimes in the TJ-II stellarator. Phys. Rev. Lett. 100, 215003 (2008)

    Article  ADS  Google Scholar 

  112. Melnikov, A.V., et al.: Control and data acquisition for dual HIBP diagnostics in the TJ-II stellarator. Fusion Eng. Design 96–97, 724 (2015)

    Article  Google Scholar 

  113. Zhezhera, A.I., et al.: New capabilities of plasma potential and density measurements using a dual heavy ion beam probing (HIBP) diagnostic in the TJ-II stellarator. Probl. At. Sci. Technol. Ser. ‘Plasma Physics’ 23 No 1 (107), 261 (2017)

    Google Scholar 

  114. Hidalgo, C., et al.: Multi-scale physics mechanisms and spontaneous edge transport bifurcations in fusion plasmas. Europhys. Lett. 87, 55002 (2009)

    Article  ADS  Google Scholar 

  115. Hidalgo, C. et al On the influence of ECRH on neoclassical and anomalous mechanisms using a dual heavy ion beam probe diagnostic in the TJ-II stellarator 2016. In: 26th IAEA Fusion Energy Conference (2016, Kyoto, Japan)) Rep. EX/P7-44. https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fec2016-preprints/preprint0209.pdf

  116. Alonso, J.A., et al.: Observation of oscillatory radial electric field relaxation in a helical plasma. Phys. Rev. Lett. 118, 185002 (2017)

    Article  ADS  Google Scholar 

  117. Melnikov, A.V., et al.: A quasi-coherent electrostatic mode in ECRH plasmas on TJ-II. Plasma Fusion Res. 6, 2402030 (2011)

    Article  Google Scholar 

  118. Castejón, F., et al.: Influence of magnetic well on electromagnetic turbulence in the TJ-II stellarator. Plasma Phys. Control. Fusion 58, 094001 (2016)

    Article  ADS  Google Scholar 

  119. Ramish, M., et al.: On the detection of Reynolds stress as a driving and damping mechanism of geodesic acoustic modes and zonal flows. New J. Phys. 5, 12 (2003)

    Article  ADS  Google Scholar 

  120. Van Milligen, B., Estrada, T., Jiménez-Gómez, R., et al.: A global resonance phenomenon at the TJ-II stellarator. Nucl. Fusion 51, 013005 (2011)

    Article  ADS  Google Scholar 

  121. Eliseev, L.G., et al.: Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak. Phys. Plasmas 22, 052504 (2015)

    Article  ADS  Google Scholar 

  122. Eliseev, L.G., Ivanov, N.V., Kakurin, A.M., et al.: Study of the large-scale MHD mode and its effect on GAM in the T-10 tokamak. In: 42nd EPS Conference on Plasma Physics. Lisbon, Portugal, ECA, 39E, P5.159 (2015). http://ocs.ciemat.es/EPS2015PAP/pdf/P5.159.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melnikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, A.V. (2019). Characterization of the Quasicoherent Oscillations in the Plasma Potential. In: Electric Potential in Toroidal Plasmas. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03481-8_4

Download citation

Publish with us

Policies and ethics