Skip to main content

Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection

  • Conference paper
  • First Online:
Advances in Production Research (WGP 2018)

Abstract

The manufacturing industry has difficulties with the question of how advanced analytics, can be integrated into production. This paper describes the algorithm selection step of an overall methodology for the systematic implementation of data mining projects in production. This is intended to provide users with a guideline to what a basic procedure may look like and what steps should be considered. First, this procedure is explained, which is then performed and illustrated on an application of high-frequency machine data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth, A. (ed.) Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis. Springer Gabler, Heidelberg (2016)

    Google Scholar 

  2. Wee, D., Kelly, R., Cattel, J., Breunig, M.: Industry 4.0-How to Navigate Digitization of the Manufacturing Sector, p. 58. McKinsey & Company (2015)

    Google Scholar 

  3. Lueth, L., Patsioura, C., Williams, D., et al.: The current state of data analytics usage in industrial companies. In: Industrial Analytics, Digital Analytics Association Germany, pp. 38–49 (2016)

    Google Scholar 

  4. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019)

    Article  Google Scholar 

  5. Elangovan, M., Sakthivel, N.R., Saravanamurugan, S., Nair, B.B., Sugumaran, V.: Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Comput. Sci. 50, 282–288 (2015)

    Article  Google Scholar 

  6. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)

    Google Scholar 

  7. Lenz, J., Wuest, T., Westkämper, E.: Holistic approach to machine tool data analytics. J. Manuf. Syst., 1–12 (2018)

    Google Scholar 

  8. Kasravi, K.: Data mining and knowledge discovery in manufacturing, Technical Papers-society of Manufacturing Engineers (1998)

    Google Scholar 

  9. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)

    Google Scholar 

  10. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Mateo (2016)

    Google Scholar 

  11. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave Macmillan, London (2005)

    MATH  Google Scholar 

  12. Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining methodology for engineering applications - a holistic extension to the CRISP-DM model, pp. 1–6 (2018)

    Google Scholar 

  13. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5, 13–22 (2000)

    Google Scholar 

  14. Stanula, P., Ziegenbein, A., Metternich, J.: Machine learning algorithms in production: a guideline for efficient data source selection. In: 6th CIRP Global Web Conference (2018, in press)

    Google Scholar 

  15. Knorr, C., Friedrich, A.: QFD ‐ Quality Function Deployment: Mit System zu marktattraktiven Produkten. Carl Hanser Verlag GmbH Co KG (2016)

    Google Scholar 

  16. Chan, L.-K., Wu, M.-L.: Quality function deployment: a literature review. Eur. J. Oper. Res. 143, 463–497 (2002)

    Article  Google Scholar 

  17. DIN Deutsches Institut für Normung e. V., Fehlzustandsart- und -auswirkungsanalyse (FMEA) 03.120.01, DIN EN 60812, 2015 (2015-08)

    Google Scholar 

  18. Zangemeister, C.: Nutzwertanalyse in der Systemtechnik: eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen, 5th erw. Aufl. (2014)

    Google Scholar 

  19. Lillich, L.: Nutzwertverfahren. Physica-Verlag, Heidelberg (1992)

    Book  Google Scholar 

  20. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576 (1991)

    Article  Google Scholar 

  21. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998)

    Article  Google Scholar 

  22. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6, 325–327 (1976)

    Article  Google Scholar 

  23. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958 (2003)

    Article  Google Scholar 

  24. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. 139, 1–9 (2017)

    Google Scholar 

  25. Wu, D., Jennings, C., Terpenny, J., Kumara, S., Gao, R.X.: Cloud-based parallel machine learning for tool wear prediction. J. Manuf. Sci. Eng. 140, 1–10 (2018)

    Google Scholar 

  26. Rokach, L., Maimon, O.: Data Mining with Decision Tree. Machine Perception and Artificial Intelligence. World Scientific Publishing Co. Pte. Ltd., Singapore (2014)

    Book  Google Scholar 

  27. Liaw, A., Wiener, M., et al.: Classification and regression by random forest. R News 2, 18–22 (2002)

    Google Scholar 

  28. Nisbet, R., Elder, J., Miner, G.: Handbook of statistical analysis and data mining applications. Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  29. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Ziegenbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ziegenbein, A., Stanula, P., Metternich, J., Abele, E. (2019). Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection. In: Schmitt, R., Schuh, G. (eds) Advances in Production Research. WGP 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-03451-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03451-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03450-4

  • Online ISBN: 978-3-030-03451-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics