Skip to main content

Optical Properties of Black Carbon Aggregates

  • Chapter
  • First Online:
Book cover Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

Black carbon (BC, also widely referred to as soot), a typical carbonaceous aerosol, is an important by-product of incomplete combustion of fossil fuel, biomass, biofuel, etc. (Sorensen 2001; Bond and Bergstrom 2006; Bond et al. 2013; Shrestha et al. 2010; Sharma et al. 2013). As the most absorbing aerosol of solar radiation, BC directly warms atmosphere and reduces radiation reaching the surface, and, thus, plays a critical role on global and regional weather and climate (Jacobson 2001; Menon et al. 2002; Bond and Sun 2005; Ramanathan and Carmichael 2008; Schwarz et al. 2008; Chakrabarty et al. 2009; Scarnato et al. 2013; Bond et al. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Chung SH, Buseck PR (2010) Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res 115. https://doi.org/10.1029/2009jd012868

  • Alexander DT, Crozier PA, Anderson JR (2008) Brown carbon spheres in East Asian outflow and their optical properties. Science 321:833–836

    Article  ADS  Google Scholar 

  • Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  ADS  Google Scholar 

  • Arnott WP, Hamasha K, Moosmüller H et al (2005) Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Tech 39:17–29

    Article  ADS  Google Scholar 

  • Bahadur R, Praveen PS, Xu Y et al (2012) Solar absorption by elemental and brown carbon determined from spectral observations. Proc Natl Acad Sci USA 109:17366–17371

    Article  ADS  Google Scholar 

  • Bambha RP, Michelsen HA (2015) Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J Aerosol Sci 88:159–181

    Article  ADS  Google Scholar 

  • Bergstrom RW, Russell PB, Hignett P (2002) Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J Atmos Sci 59:567–577

    Article  ADS  Google Scholar 

  • Bergstrom RW, Pilewskie P, Schmid B et al (2003) Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J Geophys Res 108. https://doi.org/10.1029/2002jd002435

    Article  Google Scholar 

  • Bescond A, Yon J, Girasole T et al (2013) Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization. J Quant Spectrosc Radiat 126:130–139

    Article  ADS  Google Scholar 

  • Bescond A, Yon J, Ouf FX et al (2014) Automated determination of aggregate primary particle size distribution by TEM image analysis: application to soot. Aerosol Sci Tech 48:831–841

    Article  ADS  Google Scholar 

  • Bibi S, Alam K, Chishtie F et al (2017) Observations of black carbon aerosols characteristics over an urban environment: radiative forcing and related implications. Sci Total Environ 603–604:319–329

    Article  ADS  Google Scholar 

  • Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Bond TC (2001) Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys Res Lett 28:4075–4078

    Article  ADS  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Tech 40:27–67

    Article  ADS  Google Scholar 

  • Bond TC, Sun H (2005) Can reducing black carbon emissions counteract global warming? Environ Sci Tech 39:5921–5926

    Article  Google Scholar 

  • Bond TC, Covert DS, Kramlich JC et al (2002) Primary particle emissions from residential coal burning: optical properties and size distribution. J Geophys Res 107. https://doi.org/10.1029/2001jd000571

    Article  Google Scholar 

  • Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res 111. https://doi.org/10.1029/2006jd007315

  • Bond TC, Bhardwaj E, Dong R et al (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycle 21. https://doi.org/10.1029/2006gb002840

    Article  Google Scholar 

  • Bond TC, Zarzycki C, Flanner MG et al (2011) Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmos Chem Phys 11:1505–1525

    Article  ADS  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5380–5552

    Google Scholar 

  • Brasil AM, Farias TL, Carvalho MG (1999) A recipe for image characterization of fractal-like aggregates. J Aerosol Sci 30:1379–1389

    Article  ADS  Google Scholar 

  • Brasil AM, Farias TL, Carvalho MG (2000) Evaluation of the fractal properties of cluster-cluster aggregates. Aerosol Sci Tech 33:440–454

    Article  ADS  Google Scholar 

  • Burr DW, Daun KJ, Thomson KA et al (2012) Optimization of measurement angles for soot aggregate sizing by elastic light scattering, through design-of-experiment theory. J Quant Spectrosc Radiat 113:355–365

    Article  ADS  Google Scholar 

  • Cai J, Lu N, Sorensen CM (1993) Comparison of size and morphology of soot aggregates as determined by light scattering and electron microscope analysis. Langmuir 9:2861–2867

    Article  Google Scholar 

  • Cappa CD, Lack DA, Covert DS et al (2008) Bias in Filter-based aerosol light absorption measurements due to organic aerosol loading: evidence from ambient measurements. Aerosol Sci Tech 42:1033–1041

    Article  ADS  Google Scholar 

  • Cappa CD, Onasch TB, Massoli P et al (2012) Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337:1078–1081

    Article  ADS  Google Scholar 

  • Chakrabarty RK, Moosmüller H, Garro MA et al (2006) Emissions from the laboratory combustion of wildland fuels: particle morphology and size. J Geophys Res 111:1135–1153. https://doi.org/10.1029/2005JD006659

    Article  Google Scholar 

  • Chakrabarty RK, Moosmüller H, Arnott WP et al (2007) Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. Appl Opt 46:6990–7006

    Article  ADS  Google Scholar 

  • Chakrabarty RK, Moosmüller H, Arnott WP et al (2009) Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Phys Rev Lett 102:235504

    Article  ADS  Google Scholar 

  • Chakrabarty RK, Arnold IJ, Francisco DM et al (2013) Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals. J Quant Spectrosc Radiat 122:25–30

    Article  ADS  Google Scholar 

  • Chakrabarty RK, Beres ND, Moosmüller H et al (2014) Corrigendum: soot super aggregates from flaming wildfires and their direct radiative forcing. Sci Rep 4:5508

    Article  Google Scholar 

  • Chang H, Charalampopoulos TT (1990) Determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc A 430:577–591

    Article  ADS  Google Scholar 

  • Charalampopoulos TT, Shu G (2002) Effects of polydispersity of chainlike aggregates on light scattering properties and data inversion. Appl Opt 41:723–733

    Article  ADS  Google Scholar 

  • Chen C, Fan X, Shaltout T et al (2016) An unexpected restructuring of combustion soot aggregates by subnanometer coatings of polycyclic aromatic hydrocarbons. Geophys Res Lett 43:11080–11088

    Article  ADS  Google Scholar 

  • Cheng T, Wu Y, Chen H (2014) Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status. Opt Express 22:15904–15917

    Article  ADS  Google Scholar 

  • China S, Mazzoleni C, Gorkowski K et al (2013) Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat Commun 4:2122

    Article  Google Scholar 

  • Chung CE, Ramanathan V, Decremer D (2012a) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci USA 109:11624–11629

    Article  ADS  Google Scholar 

  • Chung CE, Lee K, Müller D (2012b) Effect of internal mixture on black carbon radiative forcing. Tellus B 64:1–13

    Article  Google Scholar 

  • Conant WC, Nenes A, Seinfeld JH (2002) Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory. J Geophys Res 107. https://doi.org/10.1029/2002jd002094

    Article  Google Scholar 

  • Coz E, Leck C (2011) Morphology and state of mixture of atmospheric soot aggregates during the winter season over Southern Asia—a quantitative approach. Tellus B 63:107–116

    Article  ADS  Google Scholar 

  • D’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. J Med Microbiol 54:55–61

    Google Scholar 

  • Dalzell WH, Sarofim AF (1969) Optical constants of soot and their application to heat-flux calculations. J Heat Trans 91:100–104

    Article  Google Scholar 

  • Dankers S, Leipertz A (2004) Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements. Appl Opt 43:3726–3731

    Article  ADS  Google Scholar 

  • Dlugach JM, Mishchenko MI (2015) Scattering properties of heterogeneous mineral particles with absorbing inclusions. J Quant Spectrosc Radiat 162:89–94

    Article  ADS  Google Scholar 

  • Dobbins RA, Megaridis CM (1991) Absorption and scattering of light by polydisperse aggregates. Appl Opt 30:4747–4754

    Article  ADS  Google Scholar 

  • Doner N, Liu F (2017) Impact of morphology on the radiative properties of fractal soot aggregates. J Quant Spectrosc Radiat 187:10–19

    Article  ADS  Google Scholar 

  • Dong J, Zhao JM, Liu L (2015) Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate. J Quant Spectrosc Radiat 165:43–55

    Article  ADS  Google Scholar 

  • Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am 11:1491–1499

    Article  ADS  Google Scholar 

  • Dukhin AS, Fluck D, Goetz PJ et al (2007) Characterization of fractal particles using acoustics, electroacoustics, light scattering, image analysis, and conductivity. Langmuir 23:5338–5351

    Article  Google Scholar 

  • Eggersdorfer ML, Pratsinis SE (2012) The structure of agglomerates consisting of polydisperse particles. Aerosol Sci Tech 46:347–353

    Article  ADS  Google Scholar 

  • Farias TL, Köylü ÜÖ, Carvalho MG (1996a) Effects of polydispersity of aggregates and primary particles on radiative properties of simulated soot. J Quant Spectrosc Radiat 55:357–371

    Article  ADS  Google Scholar 

  • Farias TL, Köylü ÜÖ, Carvalho MG (1996b) Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl Opt 35:6560–6567

    Article  ADS  Google Scholar 

  • Filippov AV, Zurita M, Rosner DE (2000) Fractal-like aggregates: relation between morphology and physical properties. J Colloid Interface Sci 229:261–273

    Article  ADS  Google Scholar 

  • Freney EJ, Adachi K, Buseck PR (2010) Internally mixed atmospheric aerosol particles: hygroscopic growth and light scattering. J Geophys Res 115. https://doi.org/10.1029/2009jd013558

  • Fuller KA, Malm WC, Kreidenweis SM (1999) Effects of mixing on extinction by carbonaceous particles. J Geophys Res 104:15941–15954

    Article  ADS  Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H et al (2005) Features in wavelength dependence of aerosol absorption observed over central India. Geophys Res Lett 32. https://doi.org/10.1029/2005gl023023

  • Gao RS, Schwarz JP, Kelly KK et al (2007) A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci Tech 41:125–135

    Article  ADS  Google Scholar 

  • Gwaze P, Schmid O, Annegarn HJ et al (2006) Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J Aerosol Sci 37:820–838

    Article  ADS  Google Scholar 

  • Gyawali M, Arnott WP, Zaveri RA et al (2012) Photoacoustic optical properties at UV, VIS, and near IR wavelength for laboratory generated and winder time ambient unban aerosols. Atmos Chem Phys 12:2587–2601

    Article  ADS  Google Scholar 

  • Hanel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19:73–188

    Article  ADS  Google Scholar 

  • He C, Li Q, Liou KN et al (2016) Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget. Atmos Chem Phys 16:3077–3098

    Article  ADS  Google Scholar 

  • He C, Liou KN, Takano Y et al (2018) Impact of grain shape and multiple black carbon internal mixing on snow albedo: parameterization and radiative effect analysis. J Geophys Res 123. https://doi.org/10.1002/2017jd027752

    ADS  Google Scholar 

  • Herd CR, McDonald GC, Hess WM (1992) Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chem Technol 65:107–129

    Article  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. B Am Meteorol Soc 79:831–844

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    Article  ADS  Google Scholar 

  • Jullien R, Kolb M (1984) Hierarchical model for chemically limited cluster-cluster aggregation. J Phys A 17:639–643

    Article  ADS  Google Scholar 

  • Kahnert FM (2003) Numerical methods in electromagnetic scattering theory. J Quant Spectrosc Radiat 79–80:775–824

    Article  ADS  Google Scholar 

  • Kahnert M, Devasthale A (2011) Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos Chem Phys 11:11745–11759

    Article  ADS  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H et al (2012) Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations. Opt Express 20:10042–10058

    Article  ADS  Google Scholar 

  • Kamimoto T, Shimono M, Kase M (2007) Dynamic measurements of soot aggregate size in diesel exhaust by a light scattering method. J Phys: Conf Ser 85:65–70

    Google Scholar 

  • Kirchstetter TW, Novakov T (2007) Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos Environ 41:1874–1888

    Article  ADS  Google Scholar 

  • Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res 109. https://doi.org/10.1029/2004jd004999

    Article  Google Scholar 

  • Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696

    Article  ADS  Google Scholar 

  • Kolokolova L, Kimura H, Ziegler K et al (2006) Lighter-scattering properties of random-oriented aggregates: do they represent the properties of an ensemble aggregates? J Quant Spectrosc Radiat 100:199–206

    Article  ADS  Google Scholar 

  • Köylü ÜÖ, Faeth GM (1992) Structure of overfire soot in buoyant turbulent-diffusion flames at long residence times. Combust Flame 89:140–156

    Article  Google Scholar 

  • Köylü ÜÖ, Faeth GM (1994) Optical properties of soot in buoyant laminar diffusion flames. J Heat Trans 116:971–979

    Article  Google Scholar 

  • Krekov GM (1993) Models of atmospheric aerosols. Aerosol effects on climate 9–72

    Google Scholar 

  • Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10:4207–4220

    Article  ADS  Google Scholar 

  • Lack DA, Langridge JM (2013) On the attribution of black carbon and brown carbon light absorption using the Angstrom exponent. Atmos Chem Phys 13:10535–10543

    Article  ADS  Google Scholar 

  • Lawless PA, Rodes CE, Ensor DS (2004) Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos Environ 38:3373–3383

    Article  ADS  Google Scholar 

  • Lee KW (1983) Change of particle size distribution during Brownian coagulation. J Colloid Interface Sci 92:315–325

    Article  ADS  Google Scholar 

  • Lehre T, Jungfleisch B, Suntz R et al (2003) Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements. Appl Opt 42:2021–2030

    Article  ADS  Google Scholar 

  • Lesins G, Chylek P, Lohmann U (2002) A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J Geophys Res 107. https://doi.org/10.1029/2001jd00973

  • Li J, Anderson JR, Buseck PR (2003) TEM study of aerosol particles from clean and polluted marine boundary layers over the North Atlantic. J Geophys Res 108. https://doi.org/10.1029/2002jd002106

  • Li H, Liu C, Bi L et al (2010) Numerical accuracy of “equivalent” spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates. J Quant Spectrosc Radiat 111:2127–2132

    Article  ADS  Google Scholar 

  • Li J, Liu C, Yin Y et al (2016) Numerical investigation on the Ångström exponent of black carbon aerosol. J Geophys Res 121:3506–3518

    Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation

    Google Scholar 

  • Liou KN, Takano Y, Yang P (2011) Light absorption and scattering by aggregates: application to black carbon and snow grains. J Quant Spectrosc Radiat 112:1581–1594

    Article  ADS  Google Scholar 

  • Liu QH (1997) The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw Opt Tech Lett 15:158–165

    Article  Google Scholar 

  • Liu L, Mishchenko MI (2005) Effects of aggregation on scattering and radiative properties of soot aerosols. J Geophys Res 110. https://doi.org/10.1029/2004jd005649

  • Liu L, Mishchenko MI (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles. J Quant Spectrosc Radiat 106:262–273

    Article  ADS  Google Scholar 

  • Liu F, Smallwood GJ (2010) Radiative properties of numerically generated fractal soot aggregates: the importance of configuration averaging. J Heat Trans 132:207–214

    Google Scholar 

  • Liu F, Smallwood GJ (2011) The effect of particle aggregation on the absorption and emission properties of mono- and poly-disperse soot aggregates. Appl Phys B 104:343–355

    Article  ADS  Google Scholar 

  • Liu F, Stagg BJ, Snelling DR et al (2006) Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int J Heat Mass Transfer 49:777–788

    Article  Google Scholar 

  • Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J Quant Spectrosc Radiat 109:2656–2663

    Article  ADS  Google Scholar 

  • Liu C, Panetta RL, Yang P (2012a) Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J Quant Spectrosc Radiat 113:1728–1740

    Article  ADS  Google Scholar 

  • Liu C, Panetta RL, Yang P (2012b) The influence of water coating on the optical scattering properites of fractal soot aggregates. Aerosol Sci Tech 46:31–43

    Article  ADS  Google Scholar 

  • Liu D, Allan J, Whitehead J et al (2013) Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos Chem Phys 13:2015–2029

    Article  ADS  Google Scholar 

  • Liu C, Yin Y, Hu F et al (2015a) The effects of monomer size distribution on the radiative properties of black carbon aggregates. Aerosol Sei Tech 49:928–940

    Article  ADS  Google Scholar 

  • Liu D, Taylor JW, Young DE et al (2015b) The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon. Geophys Res Lett 42:613–619

    Article  ADS  Google Scholar 

  • Liu C, Chung CE, Zhang F et al (2016a) The colors of biomass burning aerosols in the atmosphere. Sci Rep 6:28267

    Article  ADS  Google Scholar 

  • Liu F, Yon J, Bescond A (2016b) On the radiative properties of soot aggregates. Part 2: Effects of coating. J Quant Spectrosc Radiat 172:134–145

    Article  ADS  Google Scholar 

  • Liu C, Li J, Yin Y et al (2017a) Optical properties of black carbon aggregates with non-absorptive coating. J Quant Spectrosc Radiat 187:443–452

    Article  ADS  Google Scholar 

  • Liu D, Whitehead J, Alfarra MR et al (2017b) Black carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci 10:184–188

    Article  ADS  Google Scholar 

  • Liu C, Teng S, Zhu Y, et al (2018) Performance of discretize dipole approximation for optical property simulations of black carbon aggregates. J Quant Spectrosc Radiat 221:98–109

    Google Scholar 

  • Liu C, Xu X, Yin Y, et al (2019) Black carbon aggregates: an optical property database. J Quant Spectrosc Radiat 222–223:170–179

    Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  ADS  Google Scholar 

  • Lu Z, Streets DG, Winijkul E et al (2015) Light absorption properties and radiative effects of primary organic aerosol emissions. Environ Sci Tech 49:4868–4877

    Article  Google Scholar 

  • Mackowski DW (1994) Calculation of total cross sections of multiple sphere cluster. J Opt Soc Am A 11:2851–2861

    Article  ADS  Google Scholar 

  • Mackowski DW (2006) A simplified model to predict the effects of aggregation on the absorption properties of soot particles. J Quant Spectrosc Radiat 100:237–249

    Article  ADS  Google Scholar 

  • Mackowski DW (2014) A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J Quant Spectrosc Radiat 133:264–270

    Article  ADS  Google Scholar 

  • Mackowski DW, Mishchenko MI (1996) Calculation of the T-matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 13:2266–2278

    Article  ADS  Google Scholar 

  • Mackowski DW, Mishchenko MI (2011) A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J Quant Spectrosc Radiat 112:2182–2192

    Article  ADS  Google Scholar 

  • Martins JV, Artaxo P, Liousse C et al (1998) Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J Geophys Res 103:32041–32050

    Article  ADS  Google Scholar 

  • Menon S, Hansen J, Nazarenko L et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  ADS  Google Scholar 

  • Mie G (1908) Beitrge zur optik trber medien, speziell kolloidaler metallsungen. Ann Phys 25:377–445

    Article  MATH  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mishchenko MI, Geogdzhayev IV, Cairns B et al (2007) Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective. J Quant Spectrosc Radiat 106:325–347

    Article  ADS  Google Scholar 

  • Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc Natl Acad Sci USA 106:11872–11877

    Article  ADS  Google Scholar 

  • Moosmüller H, Arnott WP (2009) Particle optics in the Rayleigh regime. J Air Waste Manag 59:1028–1031

    Article  Google Scholar 

  • Moosmüller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat 110:844–878

    Article  ADS  Google Scholar 

  • Moteki N (2016) Discrete dipole approximation for black carbon-containing aerosols in arbitrary mixing state: a hybrid discretization scheme. J Quant Spectrosc Radiat 178:306–314

    Article  ADS  Google Scholar 

  • Moteki N, Kondo Y, Nakamura SI (2010) Method to measure refractive indices of small nonspherical particles: application to black carbon particles. J Aerosol Sci 41:513–521

    Article  ADS  Google Scholar 

  • Oh C, Sorensen CM (1998) Structure factor of diffusion-limited aggregation clusters: local structure and non-self-similarity. Phys Rev E 57:784–790

    Article  ADS  Google Scholar 

  • Painter TH, Bryant AC, Skiles MK (2012) Radiative forcing by light absorbing impurities in snow from modis surface reflectance data. Geophys Res Lett 39:17502

    Article  ADS  Google Scholar 

  • Peng J, Hu M, Guo S et al (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci USA 113:4266–4271

    Article  ADS  Google Scholar 

  • Pirjola L, Niemi JV, Saarikoski S et al (2017) Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmos Environ 158:60–75

    Article  ADS  Google Scholar 

  • Posfai M, Gelencser A, Simonics R et al (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res 109. https://doi.org/10.1029/2003jd004169

    Article  Google Scholar 

  • Querry MR (1987) Optical constants of minerals and other materials from the millimeter to the ultraviolet, CRDEC-CR-88009. Aberdeen Proving Ground, Maryland

    Google Scholar 

  • Radney JG, You R, Ma X et al (2014) Dependence of soot optical properties on particle morphology: measurements and model comparisons. Environ Sci Tech 48:3169–3176

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and reginal climate change due to black carbon. Nat Geosci 1:221–227

    Article  ADS  Google Scholar 

  • Reddington CL, McMeeking G, Mann GW et al (2013) The mass and number size distribution of black carbon aerosol over Europe. Atmos Chem Phys 13:4917–4939

    Article  ADS  Google Scholar 

  • Riemer N, West M, Zaveri R et al (2010) Estimating black carbon aging time-scales with a particle-resolved aerosol model. J Aerosol Sci 41:143–158

    Article  ADS  Google Scholar 

  • Russell PB, Bergstrom RW, Shinozuka Y et al (2010) Absorption Ångström exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169

    Article  ADS  Google Scholar 

  • Sato M, Hansen J, Koch D et al (2003) Global atmospheric black carbon inferred from aeronet. Proc Natl Acad Sci USA 100:6319–6324

    Article  ADS  Google Scholar 

  • Scarnato BV, Vahidinia S, Richard DT et al (2013) Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos Chem Phys 13:5089–5101

    Article  ADS  Google Scholar 

  • Schmid O, Artaxo P et al (2006) Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos Chem Phys 6:3443–3462

    Article  ADS  Google Scholar 

  • Schnaiter M, Linke C, Möhler O et al (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res 110. https://doi.org/10.1029/2005jd006046

  • Schwarz JP, Gao RS, Spackman JR et al (2008) Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys Res Lett 35:L13810

    Article  ADS  Google Scholar 

  • Sharma S, Ishizawa M, Chan D et al (2013) 16-year simulation of arctic black carbon: transport, source contribution, and sensitivity analysis on deposition. J Geophys Res 118:943–964

    Article  Google Scholar 

  • Shiraiwa M, Kondo Y, Iwamoto T et al (2010) Amplification of light absorption of black carbon by organic coating. Aerosol Sci Tech 44:46–54

    Article  ADS  Google Scholar 

  • Shrestha G, Traina SJ, Swanston CW (2010) Black carbon’s properties and role in the environment: a comprehensive review. Sustainability 2:294–320

    Article  Google Scholar 

  • Skorupski K, Mroczka J (2014) Effect of the necking phenomenon on the optical properties of soot particles. J Quant Spectrosc Radiat 141:40–48

    Article  ADS  Google Scholar 

  • Smith AJA, Peters DM, Mcpheat R et al (2015) Measuring black carbon spectral extinction in the visible and infrared. J Geophys Res 120:9670–9683

    Google Scholar 

  • Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Tech 35:648–687

    Article  ADS  Google Scholar 

  • Sorensen CM (2011) The mobility of fractal aggregates: a review. Aerosol Sci Tech 45:765–779

    Article  ADS  Google Scholar 

  • Sorensen CM, Roberts GC (1997) The prefactor of fractal aggregates. J Colloid Interface Sci 186:447–452

    Article  ADS  Google Scholar 

  • Sorensen CM, Cai J, Lu N (1992) Test of static structure factors for describing light scattering from fractal soot aggregates. Langmuir 8:2064–2069

    Article  Google Scholar 

  • Sorensen CM, Yon J, Liu F et al (2018) Light scattering and absorption by fractal aggregate including soot. J Quant Spectrosc Radiat 217:459–473

    Article  ADS  Google Scholar 

  • Stagg BJ, Charalampopoulos TT (1993) Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25–600 °C. Combust Flame 94:381–396

    Article  Google Scholar 

  • Subramanian R, Roden CA et al (2007) Yellow beads and missing particles: trouble ahead for filter-based absorption measurements. Aerosol Sci Tech 41:630–637

    Article  ADS  Google Scholar 

  • Tumolva L, Park JY, Kim JS et al (2010) Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS. Aerosol Sci Tech 44:202–215

    Article  ADS  Google Scholar 

  • Van-Hulle P, Weill ME, Talbaut M et al (2002) Comparison of numerical studies characterizing optical properties of soot aggregates for improved EXSCA measurements. Part Part Syst Char 19:47–57

    Article  Google Scholar 

  • Wang QY, Huang RJ, Cao JJ et al (2015) Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: the source, mixing state and optical properties. Atmos Chem Phys 15:13059–13069

    Article  ADS  Google Scholar 

  • Wang Y, Liu F, He C et al (2017) Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ Sci Tech Lett 4:487–493

    Article  Google Scholar 

  • Witter TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L et al (2014) A Study of optical properties of soot aggregates composed of poly-disperse monomers using the superposition T-matrix method. Aerosol Sci Tech 49:941–949

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L et al (2016) Black carbon radiative forcing at TOA decreased during aging. Sci Rep 6:38592

    Article  ADS  Google Scholar 

  • Xu YL (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34:4573–4588

    Article  ADS  Google Scholar 

  • Xu YL, Gustafson BÅS (2001) A generalized multiparticle Mie-solution: further experimental verification. J Quant Spectrosc Radiat 70:395–419

    Article  ADS  Google Scholar 

  • Xu YL, Khlebtsov NG (2003) Orientation-averaged radiative properties of an arbitrary configuration of scatterers. J Quant Spectrosc Radiat 79:1121–1137

    Article  ADS  Google Scholar 

  • Yang P, Liou KN (1996) Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J Opt Soc Am A 13:2072–2085

    Article  ADS  Google Scholar 

  • Yon J, Bescond A, Liu F (2015) On the radiative properties of soot aggregates. Part 1: Necking and overlapping. J Quant Spectrosc Radiat 162:197–206

    Article  ADS  Google Scholar 

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat 106:558–589

    Article  ADS  Google Scholar 

  • Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat 112:2234–2247

    Article  ADS  Google Scholar 

  • Zhang R, Khalizov AF, Pagels J et al (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci USA 105:10291–10296

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We particularly thank Drs. Daniel W. Mackowski and Michael I. Mishchenko for the MSTM code, Dr. Yu-Lin Xu for the GMM code, and Drs. Maxim A. Yurkin and Alfons G. Hoekstra for the ADDA code. We also acknowledge the contributions from Shiwen Teng, Ji Li, and Chen Zeng. This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41505018), the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), and the Startup Foundation for Introducing Talent of NUIST (No. 2014r067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, C. (2019). Optical Properties of Black Carbon Aggregates. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-03445-0_5

Download citation

Publish with us

Policies and ethics