Skip to main content

The Meaning of Adaptation: Mastering the Unforeseen?

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11246))

Included in the following conference series:

Abstract

This short paper gives an introduction to a panel held as part of the track on ‘Rigorous Engineering of Collective Adaptive Systems’ at ISOLA 2018. The discussion was structured on the basis of twenty questions ranging from the evolution and universality of autonomous systems to correctness, reliability, and legal issues. ‘Do you consider adaptivity to be a realistic and desirable property of technical systems?’, ‘what is the new challenge in software engineering for the design and implementation of adaptive systems?’, ‘why should artificial intelligence open new horizons to implement adaptivity?’, ‘can we expect machines to adapt by evolution?’ as well as ‘is there a mathematical characterisation of adaptation?’ were some of the questions that were considered. For all questions, the paper also indicates related work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margaria, T., Steffen, B. (eds.): ISoLA 2016, Part I. LNCS, vol. 9952. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2

    Book  Google Scholar 

  2. Jähnichen, S., Wirsing, M.: Adaptation to the unforeseen: do we master our autonomous systems? Questions to the panel – panel introduction. In: [1], pp. 639–641 (2016)

    Google Scholar 

  3. Zadeh, L.A.: On the definition of adaptivity. Proc. IEEE 51(3), 469–470 (1963)

    Article  Google Scholar 

  4. Bruni, R., et al.: Reconciling white-box and black-box perspectives on behavioral self-adaptation. In: [47], pp. 163–184 (2015)

    Google Scholar 

  5. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-4_12

    Chapter  Google Scholar 

  6. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE 2012, pp. 48–53. IEEE Computer Society Press (2012)

    Google Scholar 

  7. Anderson, S., Bredeche, N., Eiben, A.E., van Steen, M.: Adaptive Collective Systems – Herding black sheep. BookSprints for ICT Research (2013)

    Google Scholar 

  8. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A conceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_17

    Chapter  Google Scholar 

  9. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89437-7_1

    Chapter  MATH  Google Scholar 

  10. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges beyond evolvability. CoRR abs/1108.5643 (2011)

    Google Scholar 

  11. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering autonomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35887-6_1

    Chapter  Google Scholar 

  12. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

    Chapter  Google Scholar 

  13. Hillston, J., Pitt, J., Wirsing, M., Zambonelli, F.: Collective adaptive systems: qualitative and quantitative modelling and analysis (Dagstuhl seminar 14512). In: Dagstuhl Reports 4, Schloss Dagstuhl Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  14. Belzner, L., Hölzl, M., Koch, N., Wirsing, M.: Collective autonomic systems: towards engineering principles and their foundations. In: Steffen, B. (ed.) Transactions on Foundations for Mastering Change I. LNCS, vol. 9960, pp. 180–200. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1_10

    Chapter  Google Scholar 

  15. Maggi, A., Sifakis, J., De Nicola, R.: DReAM: dynamic reconfigurable architecture modeling. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 13–31. Springer, Cham (2018)

    Google Scholar 

  16. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 304–320. Springer, Cham (2018)

    Google Scholar 

  17. Dragomir, I., Iosti, S., Bozga, M., Bensalem, S.: Designing systems with detection and reconfiguration capabilities: a formal approach. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 155–171. Springer, Cham (2018)

    Google Scholar 

  18. Eberhardinger, B., Ponsar, H., Klumpp, D., Reif, W.: Measuring and evaluating the performance of self-organization mechanisms within collective adaptive systems. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 202–220. Springer, Cham (2018)

    Google Scholar 

  19. Abd Alrahman, Y., De Nicola, R., Garbi, G.: GoAt: attribute-based interaction in Google Go. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 288–303. Springer, Cham (2018)

    Google Scholar 

  20. Kilian, C.: Modern Control Technology. Thompson Delmar Learning (2005)

    Google Scholar 

  21. Kelly III, J., Hamm, S.: Smart Machines: IBM’s Watson and the Era of Cognitive Computing. Columbia University Press, New York City (2013)

    Book  Google Scholar 

  22. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  23. Cardoso, R.P., Rossetti, R.J.F., Hart, E., Burth Kurka, D., Pitt, J.: Engineering sustainable and adaptive systems in dynamic and unpredictable environments. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 221–240. Springer, Cham (2018)

    Google Scholar 

  24. Belzner, L., Schmid, K., Phan, T., Gabor, T., Wirsing, M.: The Sharer’s dilemma in collective adaptive systems of self-interested agents. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 241–256. Springer, Cham (2018)

    Google Scholar 

  25. Ben Mahfoudh, H., Di Marzo Serugendo, G., Boulmier, A., Abdennadher, N.: Coordination model with reinforcement learning for ensuring reliable on-demand services in collective adaptive systems. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 257–273. Springer, Cham (2018)

    Google Scholar 

  26. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), 10 p. (2015)

    Google Scholar 

  27. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. CoRR abs/1606.06565 (2016)

    Google Scholar 

  28. Di Marzo Serugendo, G.: Engineering adaptivity, universal autonomous systems, ethics and compliance issues. In: [1], pp. 714–719 (2016)

    Google Scholar 

  29. Vassev, E.: Safe artificial intelligence and formal methods. In: [1], pp. 704–713 (2016)

    Google Scholar 

  30. Kurzweil, R.: The Singularity is Near. Penguin Group, New York (2005)

    Google Scholar 

  31. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Oxford (2014)

    Google Scholar 

  32. Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolutions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 239–264. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_10

    Chapter  Google Scholar 

  33. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The ensemble development life cycle and best practises for collective autonomic systems. In: [47], pp. 325–354 (2015)

    Google Scholar 

  34. Gabor, T., et al.: Adapting quality assurance to adaptive systems: the scenario coevolution paradigm. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 137–154. Springer, Cham (2018)

    Google Scholar 

  35. Abeywickrama, D.B., Mamei, M., Zambonelli, F.: Engineering collectives of self-driving vehicles: the SOTA approach. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 79–93. Springer, Cham (2018)

    Google Scholar 

  36. Pitt, J., Schaumeier, J., Artikis, A.: Axiomatization of socio-economic principles for self-organizing institutions. ACM Trans. Auton. Adapt. Syst. 7(4), 1–39 (2012)

    Article  Google Scholar 

  37. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 32–47. Springer, Cham (2018)

    Google Scholar 

  38. Sürmeli, J., Jähnichen, S., Sanders, J.W.: Modelling the transition to distributed ledgers. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 48–62. Springer, Cham (2018)

    Google Scholar 

  39. IBM Corporation: An architectural blueprint for autonomic computing. Technical report, IBM (2005)

    Google Scholar 

  40. Pitt, J., et al.: A collective adaptive socio-technical system for remote- and self-supervised exercise in the treatment of intermittent claudication. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 63–78. Springer, Cham (2018)

    Google Scholar 

  41. Wanninger, C., Eymüller, C., Hoffmann, A, Kosak, O., Reif, W.: Synthesizing capabilities for collective adaptive systems from self-descriptive hardware devices – bridging the reality gap. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 94–108. Springer, Cham (2018)

    Google Scholar 

  42. Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofroň, J.: Correctness of service components and service component ensembles. In: [47], pp. 107–159 (2015)

    Google Scholar 

  43. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Differential equivalence yields network centrality. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 186–201. Springer, Cham (2018)

    Google Scholar 

  44. Zon, N., Gilmore, S.: Data-driven modelling and simulation of urban transportation systems using Carma. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 274–287. Springer, Cham (2018)

    Google Scholar 

  45. Reichstaller, A., Gabor, T., Knapp, A.: Mutation-based test suite evolution for self-organizing systems. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 118–136. Springer, Cham (2018)

    Google Scholar 

  46. Al Ali, R., Bureš, T., Hnetynka, P., Krijt, F., Plášil, F., Vinárek, J.: Dynamic security specification through autonomic component ensembles. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 172–185. Springer, Cham (2018)

    Google Scholar 

  47. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems: Results of the ASCENS Project. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

  48. Gartner: Top 10 Strategic Technology Trends for 2017. Gartner, Inc. (2016)

    Google Scholar 

  49. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)

    Article  Google Scholar 

  50. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction paradigm for organic computing systems. In: Proceedings of the 2nd International Conference on Self-Adaptive and Self-Organizing Systems, pp. 233–242. IEEE (2008)

    Google Scholar 

  51. Badica, C., Brezovan, M., Bǎdicǎ, A.: An overview of smart home environments: architectures, technologies and applications. CEUR Workshop Proceedings, vol. 1036, pp. 78–85 (2013)

    Google Scholar 

  52. International Association of Public Transport: World report on metro automation. UITP, July 2016

    Google Scholar 

  53. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. In: 2016 SAE World Congress (2016)

    Google Scholar 

  54. Kwiatkowska, M.: Model checking and strategy synthesis for stochastic games: from theory to practice. In: ICALP 2016, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2016. LIPIcs, vol. 55, pp. 4:1–4:18 (2016)

    Google Scholar 

  55. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  56. Taeihagh, A., Min Lim, H.S.: Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transp. Rev., 26 (2018). https://doi.org/10.1080/01441647.2018.1494640

  57. Brodsky, J.S.: Autonomous vehicle regulation: how an uncertain legal landscape may hit the brakes on self-driving cars. Berkeley Tech. L. J. 31, 851–879 (2016)

    Google Scholar 

Download references

Acknowledgements

As organisers of the panel we would like to thank the panelists for the stimulating panel discussion and the ISOLA chairs Tiziana Margaria and Bernhard Steffen for giving us the opportunity to organise this panel. Our thanks go to Mirco Tribastone for carefully reading and commenting a draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wirsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jähnichen, S., De Nicola, R., Wirsing, M. (2018). The Meaning of Adaptation: Mastering the Unforeseen?. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03424-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03423-8

  • Online ISBN: 978-3-030-03424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics