Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11246))

Included in the following conference series:

Abstract

The emergence of Distributed Ledger Technologies and Cryptocurrencies impacts on how transactions of various assets between parties in highly dynamical settings – such as the Internet of Things or Smart Cities – are modelled and implemented in several ways. We study this transition from centralized accounts with explicit owners towards distributed ledgers with challenge-based transaction access control. We capture the transition in a series of linked formal specifications in Z, enabling the comparison between the two settings. In particular, we provide a reference model and then refine it for the respective settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that the preconditions and postconditions of a transaction are not to be confused with the preconditions and postconditions of a Z schema. Identifying the set \(pre\) with \(pre\_ Transaction\) would require to know the preconditions at specification.

  2. 2.

    Technically, we can imagine preconditions referencing postconditions which are not stored in the distributed ledger. We assume such ‘external’ preconditions to be stored in the data part of the transaction.

  3. 3.

    This is well-defined because every n-ary partial function can be conceived as the set of all tuples \((a_1,\dots ,a_n,f(a))\) with \(a_i\in A_i\) for each \(1\le i\le n\).

  4. 4.

    In Blockchain-jargon, these transactions are part of the ‘genesis block’.

References

  1. Abrial, J., Schuman, S.A., Meyer, B.: Specification language. In: McKeag, R.M., Macnaughlen, A.M. (eds.) On the Construction of Programs, pp. 343–410. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, pp. 30:1–30:15. ACM, New York (2018). https://doi.org/10.1145/3190508.3190538, http://doi.acm.org/10.1145/3190508.3190538

  3. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transactions. IACR Cryptology ePrint Archive 2017, 1124 (2017). http://eprint.iacr.org/2017/1124

  4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE Symposium on Security and Privacy, pp. 104–121. IEEE Computer Society (2015)

    Google Scholar 

  5. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for component interaction in the Internet of Things. Computer 49(12), 50–59 (2016). https://doi.org/10.1109/MC.2016.377

    Article  Google Scholar 

  6. Cachin, C., Caro, A.D., Moreno-Sanchez, P., Tackmann, B., Vukolic, M.: The transaction graph for modeling blockchain semantics. IACR Cryptology ePrint Archive 2017, 1070 (2017). http://eprint.iacr.org/2017/1070

  7. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010). http://www.cambridge.org/gb/knowledge/isbn/item2705443/?site_locale=en_GB

  8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  9. Lindman, J., Tuunainen, V.K., Rossi, M.: Opportunities and risks of blockchain technologies-a research agenda. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

    Google Scholar 

  10. Mainelli, M., Smith, M.: Sharing ledgers for sharing economies: an exploration of mutual distributed ledgers (aka blockchain technology). J. Financ. Perspect. 3(3), 38–58 (2015)

    Google Scholar 

  11. Marc, P.: Blockchain technology: principles and applications. In: Xavier Olleros, F., Zhegu, M. (eds.) Handbook of Research on Digital Transformations. Edward Elgar, Cheltenham (2016)

    Google Scholar 

  12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  13. Spivey, J.M.: The Z Notation - A Reference Manual. Prentice Hall International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  14. Swanson, T.: Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger systems (2015)

    Google Scholar 

  15. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey ondecentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016). https://doi.org/10.1109/COMST.2016.2535718

    Article  Google Scholar 

  16. Walport, M.: Distributed ledger technology: beyond block chain (2016)

    Google Scholar 

  17. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems - The ASCENS Approach. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

  18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2018). https://ethereum.github.io/yellowpaper/paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sürmeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sürmeli, J., Jähnichen, S., Sanders, J.W. (2018). Modelling the Transition to Distributed Ledgers. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03424-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03423-8

  • Online ISBN: 978-3-030-03424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics