Skip to main content

Co-simulation: The Past, Future, and Open Challenges

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11246))

Included in the following conference series:

Abstract

In the engineering of heterogeneous systems, there have always been challenges related to ensuring a common understanding of the interfaces between the constituent systems.

In these systems, the systematic analysis of the relevant artefacts is governed by different kinds of models based on different kinds of formalisms (e.g., state machine models for software-based controllers, and differential equations for physical sub-systems). In such a hybrid setting, it makes sense to examine how to combine different kinds of models in ways that enable a well-founded analysis of the interaction between these.

Co-simulation has been proposed as a way forward by different stakeholders in different disciplines. It is a technique to couple multiple simulation tools, so that the interactions with, and within, a coupled system can be simulated through the cooperation of these tools.

In this paper, we: provide an historical overview of the different facets of co-simulation; describe examples of industrial applications; identify the emerging trend and the challenges (both theoretical and practical) for the future use of this technology.

This work was executed under the framework of the COST Action IC1404 – Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS), and partially supported by: Flanders Make vzw, the strategic research centre for the manufacturing industry; the INTO-CPS project funded by the European Commission’s Horizon 2020 programme under grant agreement number 664047; and PhD fellowship grants from the Agency for Innovation by Science and Technology in Flanders (IWT, dossier 151067).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fmi-standard.org/.

References

  1. IEEE. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Federate Interface Specification. IEEE Standard 1516-2010 (2010). https://standards.ieee.org/findstds/standard/1516-2010.html

  2. Åström, K.J., Elmqvist, H., Mattsson, S.E.: Evolution of continuous-time modeling and simulation. In: ESM, pp. 9–18 (1998)

    Google Scholar 

  3. Andert Jr., E.P., Morgan, D.: Collaborative virtual prototyping and test. Naval Eng. J. 110(6), 17–23 (1998). http://www.ingentaconnect.com/content/asne/nej/1998/00000110/00000006/art00007

    Article  Google Scholar 

  4. Arbab, F., Herman, I., Spilling, P.: An overview of manifold and its implementation. Concurrency Pract. Exper. 5(1), 23–70 (1993). https://doi.org/10.1002/cpe.4330050103

    Article  Google Scholar 

  5. Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numer. Math. 41(1), 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bjornson, R., Carriero, N., Gelernter, D., Mattson, T., Kaminsky, D., Sherman, A.: Experience with linda. Yale University Computer Science Department, Technical report RR-866 (1991)

    Google Scholar 

  7. Blochwitz, T., et al.: The functional mockup interface for tool independent exchange of simulation models. In: 8th International Modelica Conference, pp. 105–114. Linköping University Electronic Press, Linköpings universitet, Dresden, Germany, June 2011

    Google Scholar 

  8. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynamical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_8

    Chapter  Google Scholar 

  9. Boulanger, F., Hardebolle, C.: Simulation of multi-formalism models with ModHel’X. In: Proceedings of ICST 2008, pp. 318–327. IEEE Computer Society (2008)

    Google Scholar 

  10. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Requirements for Hybrid Cosimulation. Technical report (2014)

    Google Scholar 

  11. Carter, R., Navarro-López, E.M.: Dynamically-driven timed automaton abstractions for proving liveness of continuous systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 59–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_6

    Chapter  MATH  Google Scholar 

  12. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer, New York (2006). https://doi.org/10.1007/0-387-30260-3

    Book  MATH  Google Scholar 

  13. Chen, B.C., Peng, H.: Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations. Vehicle Syst. Dyn. 36(4–5), 359–389 (2001)

    Article  Google Scholar 

  14. Controllab Products: Design of a Compensated Motion Crane using INTO-CPS. Technical report, Press Release EU, Enschede, Netherlands (2018)

    Google Scholar 

  15. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid co-simulation: it’s about time. Softw. Syst. Model. (2017)

    Google Scholar 

  16. Denil, J., De Meulenaere, P., Demeyer, S., Vangheluwe, H.: DEVS for AUTOSAR-based system deployment modeling and simulation. Simulation 93(6), 489–513 (2017). http://journals.sagepub.com/doi/10.1177/0037549716684552

    Article  Google Scholar 

  17. Denil, J., Klikovits, S., Mosterman, P.J., Vallecillo, A., Vangheluwe, H.: The experiment model and validity frame in M&S. In: Proceedings of the Symposium on Theory of Modeling and Simulation, vol. 49 (2017)

    Google Scholar 

  18. Denil, J., Meyers, B., De Meulenaere, P., Vangheluwe, H.: Explicit semantic adaptation of hybrid formalisms for FMI co-simulation. In: Barros, F., Wang, M.H., Prähofer, H., Hu, X. (eds.) Symposium on Theory of Modeling and Simulation: DEVS Integrative M&S Symposium, pp. 99–106. Society for Computer Simulation International San Diego, CA, USA, Alexandria, Virginia, April 2015

    Google Scholar 

  19. Distefano, J.: Feedback and Control Systems (2013)

    Google Scholar 

  20. Eker, J., et al.: Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

    Article  Google Scholar 

  21. El-Garhy, A.M., El-Sheikh, G.A., El-Saify, M.H.: Fuzzy life-extending control of anti-lock braking system. Ain Shams Eng. J. 4(4), 735–751 (2013). https://doi.org/10.1016/j.asej.2012.12.003

    Article  Google Scholar 

  22. Foldager, F., Larsen, P.G., Green, O.: Development of a driverless lawn mower using co-simulation. In: 1st Workshop on Formal Co-Simulation of Cyber-Physical Systems, Trento, Italy, September 2017

    Google Scholar 

  23. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33(10), 30–53 (1990)

    Article  Google Scholar 

  24. Garlan, D., Shaw, M.: An introduction to software architecture. Technical report, Pittsburgh, PA, USA (1994)

    Google Scholar 

  25. Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM 35(2), 96 (1992). https://doi.org/10.1145/129630.376083

    Article  Google Scholar 

  26. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and U.S. air force vehicles. In: Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin, pp. 1–14. American Institute of Aeronautics and Astronautics, Reston, Virigina, April 2012. https://doi.org/10.2514/6.2012-1818

  27. Gomes, C., Karalis, P., Navarro-López, E.M., Vangheluwe, H.: Approximated stability analysis of bi-modal hybrid co-simulation scenarios. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 345–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_24

    Chapter  Google Scholar 

  28. Gomes, C., Legat, B., Jungers, R.M., Vangheluwe, H.: Stable adaptive co-simulation: a switched systems approach. In: IUTAM Symposium on Co-Simulation and Solver Coupling, Darmstadt, Germany (2017). To appear

    Google Scholar 

  29. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: State of the art. Technical report, February 2017. http://arxiv.org/abs/1702.00686

  30. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey. ACM Comput. Surv. 51(3) (2018). Article 49

    Google Scholar 

  31. Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems. In: American Control Conference, vol. 3, pp. 2273–2278. IEEE, Arlington (2001)

    Google Scholar 

  32. Hafner, I., Popper, N.: On the terminology and structuring of co-simulation methods. In: Proceedings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, pp. 67–76. ACM Press, New York (2017). http://dl.acm.org/citation.cfm?doid=3158191.3158203

  33. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1996)

    Google Scholar 

  34. Himmler, A.: Hardware-in-the-loop technology enabling flexible testing processes. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. 1–8. American Institute of Aeronautics and Astronautics, Grapevine (Dallas/Ft. Worth Region), Texas, January 2013. https://doi.org/10.2514/6.2013-816

  35. IEEE: IEEE Standard for Distributed Interactive Simulation-Application Protocols (2012). Publication Title: IEEE Std 1278.1-2012 (Revision of IEEE Std 1278.1-1995)

    Google Scholar 

  36. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6_9

    Chapter  Google Scholar 

  37. Jo, H.H., Parsaei, H.R., Sullivan, W.G.: Principles of concurrent engineering. In: Parsaei, H.R., Sullivan, W.G. (eds) Concurrent Engineering, pp. 3–23. Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3062-6_1

  38. Jørgensen, N.: The Boeing 777: development life cycle follows artifact. In: World Conference on Integrated Design and Process Technology (IDPT), pp. 25–30. Citeseer (2006)

    Google Scholar 

  39. Kent Peacock, J., Wong, J., Manning, E.G.: Distributed simulation using a network of processors. Comput. Netw. (1976) 3(1), 44–56 (1979). http://linkinghub.elsevier.com/retrieve/pii/0376507579900539

    Article  Google Scholar 

  40. Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Syst. Dyn. 4(2–3), 107–127 (2000)

    Article  MATH  Google Scholar 

  41. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6(2), 93–113 (2000)

    Article  MATH  Google Scholar 

  42. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  43. Le Marrec, P., Valderrama, C.A., Hessel, F., Jerraya, A.A., Attia, M., Cayrol, O.: Hardware, software and mechanical cosimulation for automotive applications. In: 9th International Workshop on Rapid System Prototyping, pp. 202–206 (1998)

    Google Scholar 

  44. Li, W., Zhang, X., Li, H.: Co-simulation platforms for co-design of networked control systems: an overview. Control Eng. Pract. 23, 44–56 (2014)

    Article  Google Scholar 

  45. Liboni, G., Deantoni, J., Portaluri, A., Quaglia, D., De Simone, R.: Beyond time-triggered co-simulation of cyber-physical systems for performance and accuracy improvements. In: 10th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Manchester, United Kingdom, January 2018. https://hal.inria.fr/hal-01675396

  46. Maler, O., Batt, G.: Approximating continuous systems by timed automata. In: Fisher, J. (ed.) FMSB 2008. LNCS, vol. 5054, pp. 77–89. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68413-8_6

    Chapter  MATH  Google Scholar 

  47. McCalla, W.J.: Fundamentals of Computer-Aided Circuit Simulation, vol. 37. Springer, New York (1987). https://doi.org/10.1007/978-1-4613-2011-1

    Book  Google Scholar 

  48. Miller, D., Thorpe, J.: SIMNET: the advent of simulator networking. Proc. IEEE 83(8), 1114–1123 (1995). http://ieeexplore.ieee.org/document/400452/

    Article  Google Scholar 

  49. Newton, A.R., Sangiovanni-Vincentelli, A.L.: Relaxation-based electrical simulation. SIAM J. Sci. Stat. Comput. 4(3), 485–524 (1983)

    Article  MATH  Google Scholar 

  50. Otter, M., Elmqvist, H.: The DSblock model interface for exchanging model components. In: Proceedings of the Eurosim 1995, Simulation Congress, pp. 505–510 (1995)

    Google Scholar 

  51. Palensky, P., Van Der Meer, A.A., Lopez, C.D., Joseph, A., Pan, K.: Cosimulation of intelligent power systems: fundamentals, software architecture, numerics, and coupling. IEEE Indus. Electr. Mag. 11(1), 34–50 (2017)

    Article  Google Scholar 

  52. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Technical report, CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands (1998)

    Google Scholar 

  53. Pedersen, N., Bojsen, T., Madsen, J.: Co-simulation of cyber physical systems with HMI for human in the loop investigations. In: Symposium on Theory of Modeling and Simulation, Society for Computer Simulation International, Virginia Beach, TMS/DEVS 2017, Virginia, USA, pp. 1:1–1:12 (2017). http://dl.acm.org/citation.cfm?id=3108905.3108906

  54. Pedersen, N., Lausdahl, K., Sanchez, E.V., Thule, C., Larsen, P.G., Madsen, J.: Distributed co-simulation of embedded control software using INTO-CPS. In: International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Madrid, Spain, July 2017. To appear

    Google Scholar 

  55. Pedersen, N., Lausdahl, K., Vidal Sanchez, E., Larsen, P.G., Madsen, J.: Distributed co-simulation of embedded control software with exhaust gas recirculation water handling system using INTO-CPS. In: 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 73–82. SCITEPRESS - Science and Technology Publications (2017). https://doi.org/10.5220/0006412700730082

  56. Prabhu, S.M., Mosterman, P.J.: Model-based design of a power window system: modeling, simulation and validation. In: Proceedings of IMAC-XXII: a Conference on Structural Dynamics, Society for Experimental Mechanics Inc, Dearborn, MI (2004)

    Google Scholar 

  57. Rowson, J.A.: Hardware/Software co-simulation. In: 31st Conference on Design Automation, pp. 439–440 (1994)

    Google Scholar 

  58. Schweiger, G., Engel, G., Schoeggl, J., Hafner, I., Gomes, C., Nouidui, T.: Co-simulation – an empirical survey: applications, recent developments and future challenges. In: MATHMOD 2018 Extended Abstract Volume, pp. 125–126. ARGESIM Publisher Vienna, Vienna, Austria (2018). https://www.argesim.org/publications/a55286

  59. Schweiger, G., Gomes, C., Hafner, I., Engel, G., Nouidui, T.S., Popper, N., Schoggl, J.P.: Co-simulation: leveraging the potential of urban energy system simulation. EuroHeat Power 15(I–II), 13–16 (2018)

    Google Scholar 

  60. Spiegel, M., Reynolds, P., Brogan, D.: A case study of model context for simulation composability and reusability. In: Proceedings of the Winter Simulation Conference, vol. 2005, pp. 437–444. IEEE (2005). http://ieeexplore.ieee.org/document/1574279/

  61. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.: Towards the Verification of Hybrid Co-simulation Algorithms. Submitted to CoSim-CPS (2018)

    Google Scholar 

  62. Tomiyama, T., D’Amelio, V., Urbanic, J., ElMaraghy, W.: Complexity of multi-disciplinary design. CIRP Ann. Manufact. Technol. 56(1), 185–188 (2007)

    Article  Google Scholar 

  63. Uchitel, S., Yankelevich, D.: Enhancing architectural mismatch detection with assumptions. In: 2000 Seventh IEEE International Conference and Workshop on the Engineering of Computer Based Systems, (ECBS 2000) Proceedings, pp. 138–146 (2000)

    Google Scholar 

  64. Van Acker, B., Denil, J., Meulenaere, P.D., Vangheluwe, H.: Generation of an optimised master algorithm for FMI co-simulation. In: Barros, F., Wang, M.H., Prähofer, H., Hu, X. (eds.) Symposium on Theory of Modeling and Simulation-DEVS Integrative, pp. 946–953. Society for Computer Simulation International San Diego, CA, USA, Alexandria, Virginia, USA, April 2015

    Google Scholar 

  65. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engineering at work: the challenges for designing mechatronic products. Eng. Comput. 29(3), 389–408 (2013)

    Article  Google Scholar 

  66. Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: AI, Simulation and Planning in High Autonomy Systems, pp. 9–20. SCS (2002)

    Google Scholar 

  67. Vangheluwe, H.L., Vansteenkiste, G.C., Kerckhoffs, E.J.: Simulation for the future: progress of the esprit basic research Working Group 8467. In: Proceedings of the 1996 European Simulation Symposium, pp. XXIX–XXXIV. Society for Computer Simulation International, Genoa (1996)

    Google Scholar 

  68. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations I: Nonstiff Problems, vol. 1. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-540-78862-1. Springer s edn.

  69. Wu, M.C., Shih, M.C.: Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control. Mechatronics 13(4), 331–351 (2003)

    Article  Google Scholar 

  70. Zeigler, B.P.: Theory of Modelling and Simulation. Wiley, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, C., Thule, C., Deantoni, J., Larsen, P.G., Vangheluwe, H. (2018). Co-simulation: The Past, Future, and Open Challenges. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03424-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03423-8

  • Online ISBN: 978-3-030-03424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics