Advertisement

Towards Software Performance by Construction

  • Mirco TribastoneEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11244)

Abstract

Performance is an important extra-functional factor that directly impacts on the quality of a software system as perceived by its users. It indicates how well the software behaves, thus complementing functional properties that concern what the software does. Its ever-increasing relevance cannot be underestimated.

Notes

Acknowledgement

This work is partially supported by a DFG Mercator Fellowship, project DAPS2 under the Special Priority Programme (SPP) 1593 “Design for Future — Managed Software Evolution”.

References

  1. 1.
    4 awesome slides showing how page speed correlates to business metrics at walmart.com. http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/. Accessed 12 Jan 2018
  2. 2.
    NASA delays satellite launch after finding bugs in software program. https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx. Accessed 4 Feb 2018
  3. 3.
    Using page speed in mobile search ranking. https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html. Accessed 18 Jan 2018
  4. 4.
    Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)CrossRefGoogle Scholar
  5. 5.
    Aleti, A., Trubiani, C., van Hoorn, A., Jamshidi, P.: An efficient method for uncertainty propagation in robust software performance estimation. J. Syst. Softw. 138, 222–235 (2018)CrossRefGoogle Scholar
  6. 6.
    Awad, M., Menasce, D.A.: Deriving parameters for open and closed QN models of operational systems through black box optimization. In: Proceedings of the International Conference on Performance Engineering (ICPE) (2017)Google Scholar
  7. 7.
    Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)CrossRefGoogle Scholar
  8. 8.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  9. 9.
    Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (2016)Google Scholar
  10. 10.
    Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72522-0_4 CrossRefGoogle Scholar
  12. 12.
    Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced modeling and solution of layered queueing networks. IEEE Trans. Softw. Eng. 35(2), 148–161 (2009)CrossRefGoogle Scholar
  13. 13.
    Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth software architectures. In: Proceedings of the 35th International Conference on Software Engineering (ICSE), pp. 901–910 (2013)Google Scholar
  14. 14.
    Incerto, E., Napolitano, A., Tribastone, M.: Moving horizon estimation of service demands in queuing networks. In: 26th IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (2018, to appear)Google Scholar
  15. 15.
    Incerto, E., Tribastone, M., Trubiani, C.: Symbolic performance adaptation. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-managing Systems (SEAMS) (2016)Google Scholar
  16. 16.
    Kalbasi, A., Krishnamurthy, D., Rolia, J., Richter, M.: MODE: mix driven on-line resource demand estimation. In: 7th International Conference on Network and Service Management (2011)Google Scholar
  17. 17.
    Kowal, M., Schaefer, I., Tribastone, M.: Family-based performance analysis of variant-rich software systems. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 94–108. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54804-8_7 CrossRefGoogle Scholar
  18. 18.
    Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parameter spaces in variability-aware software performance models. In: 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 407–417 (2015)Google Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  20. 20.
    Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven software development. IEEE Softw. 20(5), 42–45 (2003)CrossRefGoogle Scholar
  21. 21.
    Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource demand estimation. Perform. Eval. 92, 51–71 (2015)CrossRefGoogle Scholar
  22. 22.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  23. 23.
    Thereska, E., Doebel, B., Zheng, A.X., Nobel, P.: Practical performance models for complex, popular applications. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 1–12 (2010)Google Scholar
  24. 24.
    Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–6:45 (2014)CrossRefGoogle Scholar
  25. 25.
    Tribastone, M.: A fluid model for layered queueing networks. IEEE Trans. Softw. Eng. 39(6), 744–756 (2013)CrossRefGoogle Scholar
  26. 26.
    Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: Proceedings of the Seventh International Workshop on Software and Performance (WOSP) (2008)Google Scholar
  27. 27.
    Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into PEPA models. In: Fifth International Conference on the Quantitative Evaluaiton of Systems (QEST), pp. 205–214 (2008)Google Scholar
  28. 28.
    Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogeneous nonlinear models with differential hulls. IEEE Trans. Autom. Control 61(4), 1099–1104 (2016)CrossRefGoogle Scholar
  29. 29.
    Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engineering. In: Proceedings of the Future of Software Engineering (FOSE), pp. 171–187 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IMT School for Advanced StudiesLuccaItaly

Personalised recommendations